UGC APPROVED ISSN 2278-1412

Archive

  Volume 13 | Issue 11

  Volume 13 | Issue 10

  Volume 13 | Issue 9

  Volume 13 | Issue 8

  Volume 13 | Issue 7

  Volume 13 | Issue 6

  Volume 13 | Issue 5

  Volume 13 | Issue 3

  Volume 13 | Issue 1

  Volume 12 | Issue 12

  Volume 12 | Issue 11

  Volume 12 | Issue 10

  Volume 12 | Issue 9

  Volume 12 | Issue 8

  Volume 12 | Issue 7

  Volume 12 | Issue 6

  Volume 12 | Issue 5

  Volume 12 | Issue 4

  Volume 12 | Issue 3

  Volume 12 | Issue 2

  Volume 12 | Issue 1

  Volume 11 | Issue 12

  Volume 11 | Issue 11

  Volume 11 | Issue 10

  Volume 11 | Issue 8

  Volume 11 | Issue 7

  Volume 11 | Issue 6

  Volume 11 | Issue 3

  Volume 11 | Issue 1

  Volume 10 | Issue 12

  Volume 10 | Issue 8

  Volume 10 | Issue 6

  Volume 10 | Issue 3

  Volume 10 | Issue 2

  Volume 10 | Issue 1

  Volume 9 | Issue 10

  Volume 8 | Issue 11

  Volume 8 | Issue 7

  Volume 7 | Issue 8

  Volume 7 | Issue 7

  Volume 7 | Issue 6

  Volume 7 | Issue 5

  Volume 7 | Issue 4

  Volume 7 | Issue 3

  Volume 7 | Issue 2

  Volume 7 | Issue 1

  Volume 6 | Issue 12

  Volume 6 | Issue 10

  Volume 6 | Issue 9

  Volume 6 | Issue 8

  Volume 6 | Issue 7

  Volume 6 | Issue 6

  Volume 6 | Issue 5

  Volume 6 | Issue 4

  Volume 6 | Issue 3

  Volume 6 | Issue 2

  Volume 6 | Issue 1

  Volume 5 | Issue 12

  Volume 5 | Issue 11

  Volume 5 | Issue 10

  Volume 5 | Issue 9

  Volume 5 | Issue 8

  Volume 5 | Issue 7

  Volume 5 | Issue 6

  Volume 5 | Issue 5

  Volume 5 | Issue 4

  Volume 5 | Issue 3

  Volume 5 | Issue 2

  Volume 5 | Issue 1

  Volume 4 | Issue 12

  Volume 4 | Issue 10

  Volume 4 | Issue 8

  Volume 4 | Issue 7

  Volume 4 | Issue 6

  Volume 4 | Issue 5

  Volume 4 | Issue 4

  Volume 4 | Issue 2

  Volume 4 | Issue 1

  Volume 3 | Issue 10

  Volume 3 | Issue 8

  Volume 3 | Issue 6

  Volume 3 | Issue 5

  Volume 3 | Issue 4

  Volume 3 | Issue 3

  Volume 3 | Issue 2

  Volume 3 | Issue 1

  Volume 2 | Issue 12

  Volume 2 | Issue 11

  Volume 2 | Issue 10

  Volume 2 | Issue 9

  Volume 2 | Issue 8

  Volume 2 | Issue 7

  Volume 2 | Issue 2

  Volume 1 | Issue 9

  Volume 1 | Issue 8

  Volume 1 | Issue 7

  Volume 1 | Issue 6

  Volume 1 | Issue 4

  Volume 1 | Issue 3

  Volume 1 | Issue 2

  Volume 1 | Issue 1

Current Volume 14 | Issue 01

Intelligent Demand Response Strategies for Peak Load Shaving in Smart Grids - A Review


Volume:  13 - Issue: 05 - Date: 01-05-2024
Approved ISSN:  2278-1412
Published Id:  IJAECESTU404 |  Page No.: 130-133
Author: Devesh Srivastava
Co- Author: Prof. Ashish Bhargava
Abstract:-This review paper explores the landscape of intelligent demand response strategies tailored for peak load shaving within the context of smart grids. As the complexity and interconnectedness of modern power systems continue to grow, the need for effective demand-side management becomes imperative. The paper provides a comprehensive analysis of existing literature, synthesizing insights into diverse intelligent demand response approaches employed to alleviate peak loads in smart grid environments. The review categorizes and evaluates various demand response strategies, encompassing both conventional and emerging technologies, with a specific focus on their intelligence and adaptability. Intelligent demand response mechanisms leverage advanced technologies, such as machine learning algorithms, data analytics, and predictive modeling, to dynamically optimize energy consumption patterns and reduce peak loads during periods of high demand. Key themes addressed in this review include the integration of smart meters, advanced communication infrastructures, and real-time monitoring systems to facilitate the seamless implementation of intelligent demand response strategies. The effectiveness of these strategies is assessed in terms of their impact on grid reliability, energy efficiency, and overall system resilience. 
Key Words:-Smart Grids, Peak Load Shaving, Intelligent Demand Response, Energy Management, Sustainability, Grid Resilience, Smart Meters, Machine Learning, Predictive Modeling
Area:-Engineering
Download Paper: 
Preview This Article

Unable to display PDF file. Download instead.


Download Paper

Downlaod Paper

No. of Download

000184

Impact Factor

7.4


ijaece

Upcoming Events


Special Issue For Paper


Upcoming Conference


Call For Paper