
International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 7, July. 2024, pp.101-105, ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[101]

INTERPRETABLE ACCURACY OF SOFTWARE DEFECT

PREDICTION USING MACHINE LEARNING TECHNIQUE
1

Monika Nagar,
2

Dr. Indu Shrivastava, 3 Swati Khanve, 4Dr. Sneha Soni,
1M. Tech. Scholar, CSE SIRTE Bhopal, , India

2,3Prof., CSE SIRTE Bhopal,swatikhanve55.sk@gmail.com, India
4Prof. & Head of Dept., CSE SIRTE Bhopal, soni.snehaa@gmail.com, India

Abstract: - The presence of software defects can lead to substantial impacts in terms of the functionality, reliability, and

overall effectiveness of software systems. The identification and elimination of defects during the initial phases of

software develo pment are of the highest priority in ensuring the availability of software products of superior quality. The

software defect prediction is to predict the defects in historical data base. So, in real world, it is difficult to predict

because it requires more number of data variables, metrics and historical data. The ML concentrates on the algorithms

entirely centered on statistical methods and data mining techniques for classifying and predicting the defects and these

statistical methods followed are quite similar to regression based methods which we used earlier to the ML. The RF ML

technique is providing good accuracy compared to other LR and SVM technique. In this model is simulated python

language and calculated simulation parameter i.e. precision, recall and accuracy.
Keywords: - Software Defects, Accuracy, Precision, Recall, Random Forest (RF), Logistic Regression (LR), Support Vector

Machine (SVM)

I. INTRODUCTION

A software defect (SD) refers to a visible discrepancy

that may prevent a software system from performing its

intended function. This event is usually called a defect
identified by a tester and is commonly called a

bug/flaw/error [1, 2]. According to the definition of

ISO/IEC/IEEE 24765, a software defect can be

described as a clear indication of an error in a software

system. Software Defect Prediction (SDP) is an

effective method that can actually identify software

modules or classes that are more likely to be defective

[3]. Developers are forced to go through a process of

continuous changes, timelines, and the need to ensure

flawless functionality in their work [9]. Currently,

limited staff and time requirements pose a great

challenge in testing software systems. Therefore, it is
important to allocate available resources efficiently in

favor of source code that may contain more defective

modules, and therefore, the allocation of required

testing resources. As an example, let us consider the

cost of a Java- based project [4] with a size of 100

function points and 10 KLOC. The effort is distributed

across five different phases as follows:

10% of the budget is allocated for requirements

development, analysis, and design; 20% is used for

coding; 30% is devoted to testing; and 5% is allocated

for development and training.
To make an accurate prediction, it is necessary to focus

on modules that are error-prone and require more

extensive testing. This approach helps target and deploy

limited testing resources, thereby reducing the overall

testing effort. The widespread use of software systems

across industries highlights the potentially severe

consequences of software failures that can pose serious

risks to human health and cause significant economic

burdens. For example, up to 200 deaths per year in the

UK can be attributed to preventable defects in silent

care systems [5].

In the US, the annual financial costs of software failures
in software systems are estimated to be between $22.2

billion and $59.5 billion [6]. It is therefore increasingly

important to ensure that software systems are of the

highest quality. SDP methods typically use a supervised

approach, where a set of independent variables (also

called predictors) is used to make predictions about

dependent variables (in this case error-prone modules).

Models are created using a combination of AI

techniques [13], deep learning techniques [6], and

measurable learning techniques [8].

Figure 1: SD Technique

Figure 1 shows the basic design of the SDP method. To

avoid programming errors, the first step is to organize a
measurement data set using programming modules

that contain characteristics such as module size and

module complexity. These measurements are usually

obtained from a variant control system (VCS). It is also

important to assign the proper flag to the broken

modules in case they are affected by code changes

aimed at fixing a specific issue that falls under the

category of deformation.

Deformation models are also created using AI

processes. It is also important to have the edge settings

of the AI techniques in place properly to control the
quality of the AI techniques. A trained model can

DOI Member 135.66.411

https://ijaece.com/paper-doi/135.66.411

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 7, July. 2024, pp.101-105, ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[102]

predict the classification (faulty or not) of different

modules after training is complete. Both potential and

brand new projects can benefit from these predictions.

There are two different types of training prediction

models: homogeneous software defect prediction and

heterogeneous software defect prediction. The two

types of homogeneous software defect prediction are

further categorized. First, there is the within-project

defect prediction (WPDP) model, which uses labeled
instances from project A to build a prediction model

and uses it to classify unlabeled instances in the same

project as good or bad. Second, cross-project defect

prediction (CPDP) uses labeled instances from project

A (called source) to train a prediction model to predict

issues in project B (called target).

II. SOFTWARE QUALITY AND SD

PREDICTION

II.1 Software Quality

In computer science, software pertains to the processing

of data by hardware, programs and other data to obtain

information. Software has been described as a program

developed in segments with source code. It is a set of

agents handling complexity, testability, visibility,

changeability, conformity, reliability and traceability

[9]. Software has become the foundation of modern
technology; it constitutes or controls the products and

services that human beings rely on for a wide variety of

daily activi ties, from the crucial to the trivial. It

therefore refers to measurable characteristics. Juran's

defines quality as a product featu re that satisfies

customer needs, providing customer satisfaction. The

American Society for Quality (ASQ) defines quality as

the foremost characteristics of the product and it must

endure the quantified and inferred needs and the

software distributed to th e user community should be

free of defects and scarcities. Software characteristics
are measured with respect to its complexity, cohesion,

streaks of code, amount of function points and other

factors. Quality needs to be measured which imply to

deliver a product designed in a stated way. When we

design a product, the quality of the software designed

must pertains to the feature s specified for that product

by the designer [10].

Waman believes that a successful project gives rise to

customer satisfaction. It was advocated that meeting

customer ex pectations leads to quality. Software quality

assurance is achieved through designing test cases and

using them as a control measure to ensure desired

quality. Quality Assurance of the Software is defined as

a list of events intended to appraise the product tha t will
also help us to develop and maintain the software [11,

12].

II.2 Software Defect Prediction

Product lifecycle is a complex and critical process that

enables the creation of error-free software and ensures

that software is free

of defects. This crucial step involves identifying and

correcting defects even before the final product is

delivered to the customer. Software memory contains a

wealth of data that is essential to determine the quality

of a product. These large data stores are essential to

ensure error-free software standards and provide an

optimal user experience to customers. By applying AI-

based algorithms and data mining techniques to such

documents, we aim to extract key information while
correcting defects and improving the overall quality of

the product. A product defect is an error, mistake,

omission, flaw, or oversight in the programming or

design of a computer system. This leads to inaccuracies

or unexpected things and as a result, unintended

behavior.

The impact of software bugs can be significant,

affecting both the cost and the quality. Furthermore,

identifying and correcting these errors can be very

costly. To address this error pattern, monitoring teams

should: Focus on minimizing errors and improving

software quality. Additionally, some attention should be

given to training and developing professional practices

aimed at minimizing and correcting such errors. This
important approach will bring significant benefits in

terms of improved software performance and overall

organizational success. Software error detection is a

crucial step that helps to identify and correct faulty

software modules. Ensuring high quality of software and

minimizing minor errors results in a reliable and

efficient product. Detecting and correcting errors at an

early stage significantly reduces development costs and

improves software performance. This strategy not only

promotes cost efficiency, but also leads to the creation

of more robust and sophisticated software, which
benefits both developers and end users in the long run.

SDP can also be used as a factor in planning programs

in both the intelligent world and in enterprises. Credits

from previous iterations of a product are added to the

static code, along with a log of the various

transformations used to create models to replace

damaged modules in the next delivery of the product.

This makes it an area of such parts Programming that is

likely to contain consequences is useful. This is useful

when trying to deal with expenditures limited to the

entire program structure that are too large to deal with

completely. There are good indicators of adaptation,

decision making to control product planning while

focusing on testing products and their defective parts.
SDP goes beyond the domains of business and science.

One aspect of SDP is: ability to address software

planning in both academic and business settings.

Developers can create models to predict potential issues

in subsequent versions by incorporating static code

concepts that collect logs of various changes and extract

relevant information from previous software versions.

This proactive methodology helps to identify and

resolve imperfections in specific modules. It ultimately

improves the overall quality of the product and

contributes to the quality of the product.

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 7, July. 2024, pp.101-105, ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[103]

In today's fast-paced digital environment, the

importance of efficient cost and resource management

in software development cannot be overemphasized.

The scope of the entire software structure is often

enormous, so careful planning and focus on tasks are

essential to avoid burnout and succeed. Furthermore, the

presence of potential defects further emphasizes the

need for careful evaluation to identify flaws and defects

in the product design and correct them appropriately.
Focusing on a comprehensive and detailed testing

approach, including careful consideration of weak areas,

will ensure a solid and error-free end result.

III. PROPOSED METHODOLOGY

A system that is used to understand the concept and its

environment using a simplified interpretation of the

environment usin g model is called cognitive system.

The step that we pass to construct the model is known

as inductive learning. The Cognitive system is able to

combine its experience by constructing new structures

is patterns. The constructed model and pattern by

cognitive system is called machine learning. Models

that are described as predictive since it can be used to

predict the outp ut of a function (target function) for a

given value in the function„s domain while informative
pattern are characterized only describes the portion of

data.

Random Forest is an ensemble method based on

principle of bagging. It uses decision trees as base

classifiers. To generate each single tree in Random

Forest, Breiman followed following steps: If the

number of records in the training set is N, then N

records are sampled at random but with replacement,

from the original data; this is bootstrap sample.

Figure 2: Random Forest classifier.

This sample will be the training set for growing the tree.

If there are M input variables, a number m << M is

selected such t hat at each node, m variables are
selected at random out of M and the best split on these

m attributes is used to split the node. The value of m is

held constant while the forest is growing. Each tree is

grown to the largest possible extent. There is no

pruning. In this way, multiple trees are induced in the

forest; the number of trees is pre-decided by the

parameter Ntree. The number of variables (m) selected

at each node is referred to as mtry or k in the literature.

The depth of the tree can be controlled by a paramet er

nodesize (i.e. number of instances in the leaf node),

which is usually set to one. Once the forest is trained or

built as explained above, to classify a new instance, it is

run across all the trees grown in the forest. Each tree

gives classification for the new instance which is

recorded as a vote. The votes from all trees are

combined and the class for which maximum votes are

counted (majority voting) is declared as the
classification of the new instance.

IV. SIMULATION RESULT

In this test case, we considered other standard

classification scheme such as SVM, LR and RF

classifier.

Parameter:

Accuracy gives a proportion of how precise your model

is in anticipating the real up -sides out of the absolute

up-sides anticipated

by your framework. Review gives the quantity of real

up-sides caught by our model by grouping these as

obvious positive. F- measure can give a harmony

among accuracy and review, and it is liked over
precision where information is uneven.

Where,

TP = True Positive,

TN = True Negative FP = False Positive, FN = False

Negative

Data Information:

CM1 dataset contains total 11141 entries which are

given below

Data Sample:

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 7, July. 2024, pp.101-105, ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[104]

Classifier Technique:

Table I: Comparison Result

Classifier Precision Recall Accuracy

SVM 99.34% 96.98% 96.90%

LR 99.56% 99.24% 98.56%

RF 100% 99.89% 99.86%

Precision

Figure 3: Graphical Represent of Precision

Recall

Figure 4: Graphical Represent of Recall

Accuracy

Figure 5: Graphical Represent of Accuracy

Table II displays the results of Muhammad Azam et al.

[1] and implemented method in terms of accuracy.

Malarvizhi et al. [1]

give an accuracy of 93.05% for SVM, 93.32% for LR

and 93.86% for RF. The implemented method provides

an accuracy of

96.84% for SVM, 98.99% for LR and 99.90% for RF.

Clearly, the implemented method is a 6.04%
improvement accuracy compared to Muhammad Azam

et al. [1]. Fig. 6 shows the graphical representation of

the comparison result.

Table II: Comparison Results

Design Method Accuracy
Muhammad Azam et al.

[1]
SVM 93.05%

LR 93.32%

RF 93.86%

Implemented

Design
SVM 96.84%

LR 98.99%

RF 99.90%

Accuracy

Figure 6: Graphical Represent of Accuracy method

V. CONCLUSION

In this paper By utilizing SDP, organizations can
proactively identify and address potential software

flaws, resulting in improved software performance and

customer satisfaction. The application of this

methodology enables companies to prioritize testing

efforts an d allocate resources efficiently, ultimately

leading to enhanced software reliability and reduced

risks. Malarvizhi et al. [1] give an accuracy of 93.05%

for SVM, 93.32% for LR and 93.86% for RF. The

implemented method provides an accuracy of 96.84%

for SVM, 98.99% for LR and 99.90% for RF. Clearly,

the implemented method is a 6.04% improvement

accuracy compared to Muhammad Azam et al. [1].
.

REFERENCES

[1] Muhammad Azam, Muhammad Nouman and

Ahsan Rehman Gill, “Comparative Analysis of

Machine Learning techniques to Improve Software

Defect Prediction”, KIET Journal of Computing &

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 7, July. 2024, pp.101-105, ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[105]

Information Sciences [KJCIS], vol. 5, no. 2, pp. 41-

66, 2022.

[2] L.-Q. Chen, C. Wang, and S.-L. Song, „„Software

defect prediction based on nested-stacking and

heterogeneous feature selection,‟‟Complex Intell.

Syst., vol. 8, no. 4, pp. 3333–3348, Aug. 2022

[3] M. Pavana, L. Pushpa, and A. Parkavi, „„Software

fault prediction using machine learning algorithms,‟‟

in Proc. Int. Conf. Adv. Elect. Comput. Technol.,

2022, pp. 185–197

[4] A. Al-Nusirat, F. Hanandeh, M. K. Kharabsheh,

M. Al-Ayyoub, and N. Al-Dhfairi, „„Dynamic
detection of software defects using supervised

learning techniques,‟‟ Int. J. Commun. Netw. Inf.

Secur., vol. 11, no. 1, pp. 185–191, Apr. 2022.

[5] R. Bahaweres, F. Agustian, I. Hermadi, A. Suroso,

and Y. Arkeman, „„Software defect prediction using

neural network basedSMOTE,‟‟ in Proc. 7th Int.

Conf. Electr. Eng., Comput. Sci. Informat. (EECSI),

Oct. 2020, pp. 71–76

[6] N. Li, M. Shepperd, and Y. Guo, „„A systematic

review of unsupervised learning techniques for

software defect prediction,‟‟ Inf. Softw. Technol.,

vol. 122, Jun. 2020, Art. no. 106287.

[7] Y. Qiu, Y. Liu, A. Liu, J. Zhu, and J. Xu,

„„Automatic feature exploration and an application in

defect prediction,‟‟ IEEE Access, vol. 7, pp. 112097–

112112, 2019.

[8] A. Alsaeedi and M. Z. Khan, „„Software defect

prediction using supervised machine learning and

ensemble techniques: A comparative study,‟‟ J.

Softw. Eng. Appl., vol. 12, no. 5, pp. 85–100, 2019.
[9] C. Manjula and L. Florence, „„Deep neural

network based hybrid approach for software defect

prediction using software metrics,‟‟ Cluster

Comput., vol. 22, no. S4, pp. 9847–9863, Jul. 2019.

[10] R. Jayanthi and L. Florence, „„Software defect

prediction techniques using metrics based on neural

network classifier,‟‟ Cluster Comput., vol. 22, no.

S1, pp. 77–88, Jan. 2019.

[11] A. Hammouri, M. Hammad, M. Alnabhan, and F.

Alsarayrah, „„Software bug prediction using machine

learning approach,‟‟ Int. J. Adv. Comput. Sci. Appl.,

vol. 9, no. 2, pp. 78–83, 2018.

[12] N. Kalaivani and R. Beena, „„Overview of

software defect prediction using machine learning

algorithms,‟‟ Int. J. Pure Appl. Math., vol. 118, pp.

3863–3873, Feb. 2018.

[13] M. A. Memon, M.-U.-R. Magsi, M. Memon, and

S. Hyder, „„Defects prediction and prevention

approaches for quality software development,‟‟ Int. J.

Adv. Comput. Sci. Appl., vol. 9, no. 8, pp. 451–457,
2018.

[14] E. Naresh and S. P. Shankar, „„Comparative

analysis of the various data mining techniques for

defect prediction using the NASA MDP datasets for

better quality of the software product,‟‟ Adv.

Comput. Sci. Technol., vol. 10, no. 7, pp. 2005–2017,

2017.

[15] D. Kumar and V. H. S. Shukla, „„A defect

prediction model for software product based on

ANFIS,‟‟ Int. J. Sci. Res. Devices vol. 3, no.

10, pp. 1024–1028, 2016.

[16] P. Mandal and A. S. Ami, „„Selecting best

attributes for software defect prediction,‟‟ in Proc.

IEEE Int. WIE Conf. Electr. Comput. Eng., Dec.

2015, pp. 110–113.
[17] M. C. M. Prasad, L. F. Florence, and A. Arya, „„A

study on software metrics based software defect

prediction using data mining and machine learning

techniques,‟‟ Int. J. Database Theory Appl., vol. 8,

no. 3, pp. 179–190, Jun. 2015.

[18] A. Chug and S. Dhall, „„Software defect prediction

using supervised learning algorithm and unsupervised

learning algorithm,‟‟ in Proc. 4th Int. Conf.

Confluence Next Gener. Inf. Technol. Summit,

Noida, 2013, pp. 173–179.

	Abstract: - The presence of software defects can lead to substantial impacts in terms of the functionality, reliability, and overall effectiveness of software systems. The identification and elimination of defects during the initial phases of software...

