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Abstract: - The presence of software defects can lead to substantial impacts in terms of the functionality, reliability, and 

overall effectiveness of software systems. The identification and elimination of defects during the initial phases of 

software develo pment are of the highest priority in ensuring the availability of software products of superior quality. The 

software defect prediction is to predict the defects in historical data base. So, in real world, it is difficult to predict 

because it requires more number of data variables, metrics and historical data. The ML concentrates on the algorithms 

entirely centered on statistical methods and data mining techniques for classifying and predicting the defects and these 

statistical methods followed are quite similar to regression based methods which we used earlier to the ML. The RF ML 

technique is providing good accuracy compared to other LR and SVM technique. In this model is simulated python 

language and calculated simulation parameter i.e. precision, recall and accuracy. 
Keywords: - Software Defects, Accuracy, Precision, Recall, Random Forest (RF), Logistic Regression (LR), Support Vector 

Machine (SVM) 

 

 

I. INTRODUCTION 

A software defect (SD) refers to a visible discrepancy 

that may prevent a software system from performing its 

intended function. This event is usually called a defect 
identified by a tester and is commonly called a 

bug/flaw/error [1, 2].   According to the definition of 

ISO/IEC/IEEE 24765, a software defect can be 

described as a clear indication of an error in a software 

system. Software Defect Prediction (SDP) is an 

effective method that can actually identify software 

modules or classes that are more likely to be defective 

[3]. Developers are forced to go through a process of 

continuous changes, timelines, and the need to ensure 

flawless functionality in their work [9]. Currently, 

limited staff and time requirements pose a great 

challenge in testing software systems. Therefore, it is 
important to allocate available resources efficiently in 

favor of source code that may contain more defective 

modules, and therefore, the allocation of required 

testing resources. As an example, let us consider the 

cost of a Java- based project [4] with a size of 100 

function points and 10 KLOC. The effort is distributed 

across five different phases as follows: 

10% of the budget is allocated for requirements 

development, analysis, and design; 20% is used for 

coding; 30% is devoted to testing; and 5% is allocated 

for development and training. 
To make an accurate prediction, it is necessary to focus 

on modules that are error-prone and require more 

extensive testing. This approach helps target and deploy 

limited testing resources, thereby reducing the overall 

testing effort. The widespread use of software systems 

across industries highlights the potentially severe 

consequences of software failures that can pose serious 

risks to human health and cause significant economic 

burdens. For example, up to 200 deaths per year in the 

UK can be attributed to preventable defects in silent 

care systems [5]. 

In the US, the annual financial costs of software failures 
in software systems are estimated to be between $22.2 

billion and $59.5 billion [6]. It is therefore increasingly 

important to ensure that software systems are of the 

highest quality. SDP methods typically use a supervised 

approach, where a set of independent variables (also 

called predictors) is used to make predictions about 

dependent variables (in this case error-prone modules). 

Models are created using a combination of AI 

techniques [13], deep learning techniques [6], and 

measurable learning techniques [8]. 

 
 

Figure 1: SD Technique 

Figure 1 shows the basic design of the SDP method. To 

avoid programming errors, the first step is to organize a 
measurement data  set  using  programming  modules  

that  contain  characteristics  such  as  module  size  and  

module  complexity.  These measurements are usually 

obtained from a variant control system (VCS). It is also 

important to assign the proper flag to the broken 

modules in case they are affected by code changes 

aimed at fixing a specific issue that falls under the 

category of deformation. 

Deformation models are also created using AI 

processes. It is also important to have the edge settings 

of the AI techniques in place properly to control the 
quality of the AI techniques. A trained model can 
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predict the classification (faulty or not) of different 

modules after training is complete. Both potential and 

brand new projects can benefit from these predictions. 

There are two different  types  of  training prediction 

models:  homogeneous software  defect  prediction and  

heterogeneous software  defect prediction. The two 

types of homogeneous software defect prediction are 

further categorized. First, there is the within-project 

defect prediction (WPDP) model, which uses labeled 
instances from project A to build a prediction model 

and uses it to classify unlabeled instances in the same 

project as good or bad. Second, cross-project defect 

prediction (CPDP) uses labeled instances from project 

A (called source) to train a prediction model to predict 

issues in project B (called target). 
 

II.  SOFTWARE QUALITY AND SD 

PREDICTION 

II.1 Software Quality 

In computer science, software pertains to the processing 

of data by hardware, programs and other data to obtain 

information. Software has been described as a program 

developed in segments with source code. It is a set of 

agents handling complexity, testability, visibility, 

changeability, conformity, reliability and traceability 

[9]. Software has become the foundation of modern 
technology; it constitutes or controls the products and 

services that human beings rely on for a wide variety of 

daily activi ties, from the crucial to the trivial. It 

therefore refers to measurable characteristics. Juran's 

defines quality as a product featu re that satisfies 

customer needs, providing customer satisfaction. The 

American Society for Quality (ASQ) defines quality as 

the foremost characteristics of the product and it must 

endure the quantified and inferred needs and the 

software distributed to th e user community should be 

free of defects and scarcities. Software characteristics 
are measured with respect to its complexity, cohesion, 

streaks of code, amount of function points and other 

factors. Quality needs to be measured which imply to 

deliver a product designed in a stated way. When we 

design a product, the quality of the software designed 

must pertains to the feature s specified for that product 

by the designer [10]. 

Waman believes that a successful project gives rise to 

customer satisfaction. It was advocated that meeting 

customer ex pectations leads to quality. Software quality 

assurance is achieved through designing test cases and 

using them as a control measure to ensure desired 

quality. Quality Assurance of the Software is defined as 

a list of events intended to appraise the product tha t will 
also help us to develop and maintain the software [11, 

12]. 

 

II.2 Software Defect Prediction 

Product lifecycle is a complex and critical process that 

enables the creation of error-free software and ensures 

that software is free 

of defects. This crucial step involves identifying and 

correcting defects even before the final product is 

delivered to the customer. Software memory contains a 

wealth of data that is essential to determine the quality 

of a product. These large data stores are essential to 

ensure error-free software standards and provide an 

optimal user experience to customers. By applying AI-

based algorithms and data mining techniques to such 

documents, we aim to extract key information while 
correcting defects and improving the  overall  quality of  

the  product.  A  product defect  is  an  error,  mistake,  

omission,  flaw,  or  oversight  in  the programming or 

design of a computer system. This leads to inaccuracies 

or unexpected things and as a result, unintended 

behavior. 

The impact of software bugs can be significant, 

affecting both the cost and the quality. Furthermore, 

identifying and correcting these errors can be very 

costly. To address this error pattern, monitoring teams 

should: Focus on minimizing errors and improving 

software quality. Additionally, some attention should be  

given to  training and developing professional practices 

aimed at minimizing and correcting such errors. This 
important approach will bring significant benefits in 

terms of improved software performance and overall 

organizational success. Software error detection is a 

crucial step that helps to identify and correct faulty 

software modules. Ensuring high quality of software and 

minimizing minor errors results in a reliable and 

efficient product. Detecting and correcting errors at an 

early stage significantly reduces development costs and 

improves software performance. This strategy not only 

promotes cost efficiency, but also leads to the creation 

of more robust and sophisticated software, which 
benefits both developers and end users in the long run. 

SDP can also be used as a factor in planning programs 

in both the intelligent world and in enterprises. Credits 

from previous iterations of a product are added to the 

static code, along with a log of the various 

transformations used to create models to replace 

damaged modules in the next delivery of the product. 

This makes it an area of such parts Programming that is 

likely to contain consequences is useful. This is useful 

when trying to deal with expenditures limited to the 

entire program structure that are too large to deal with 

completely. There are good indicators of adaptation, 

decision making to control product planning while 

focusing on testing products and their defective parts. 
SDP goes beyond the domains of business and science. 

One aspect of SDP is: ability to address software 

planning in both academic and business settings. 

Developers can create models to predict potential issues 

in subsequent versions by incorporating static code 

concepts that collect logs of various changes and extract 

relevant information from previous software versions. 

This proactive methodology helps to identify and 

resolve imperfections in specific modules. It ultimately 

improves the overall quality of the product and 

contributes to the quality of the product. 
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In today's fast-paced digital environment, the 

importance of efficient cost and resource management 

in software development cannot be overemphasized. 

The scope of the entire software structure is often 

enormous, so careful planning and focus on tasks are 

essential to avoid burnout and succeed. Furthermore, the 

presence of potential defects further emphasizes the 

need for careful evaluation to identify flaws and defects 

in the product design and correct them appropriately. 
Focusing on a comprehensive and detailed testing 

approach, including careful consideration of weak areas, 

will ensure a solid and error-free end result. 

 

III. PROPOSED METHODOLOGY 

A system that is used to understand the concept and its 

environment using a simplified interpretation of the 

environment usin g model is called cognitive system. 

The step that we pass to construct the model is known 

as inductive learning. The Cognitive system is able to 

combine its experience by constructing new structures 

is patterns. The constructed model and pattern by 

cognitive system is called machine learning. Models 

that are described as predictive since it can be used to 

predict the outp ut of a function (target function) for a 

given value in the function„s domain while informative 
pattern are characterized only describes the portion of 

data. 

Random Forest is an ensemble method based on 

principle of bagging. It uses decision trees as base 

classifiers. To generate each single tree in Random 

Forest, Breiman followed following steps: If the 

number of records in the training set is N, then N 

records are sampled at random but with replacement, 

from the original data; this is bootstrap sample. 

 

Figure 2: Random Forest classifier. 

This sample will be the training set for growing the tree. 

If there are M input variables, a number m << M is 

selected such t hat at each node, m variables are 
selected at random out of M and the best split on these 

m attributes is used to split the node. The value of m is 

held constant while the forest is growing. Each tree is 

grown to the largest possible extent. There is no 

pruning. In this way, multiple trees are induced in the 

forest; the number of trees is pre-decided by the 

parameter Ntree. The number of variables (m) selected 

at each node is referred to as mtry or k in the literature. 

The depth of the tree can be controlled by a paramet er 

nodesize (i.e. number of instances in the leaf node), 

which is usually set to one. Once the forest is trained or 

built as explained above, to classify a new instance, it is 

run across all the trees grown in the forest. Each tree 

gives classification for the new instance which is 

recorded as a vote. The votes from all trees are 

combined and the class for which maximum votes are 

counted (majority voting) is declared as the 
classification of the new instance. 

 

IV. SIMULATION RESULT 

In this test case, we considered other standard 

classification scheme such as SVM, LR and RF 

classifier. 

 

Parameter: 

Accuracy gives a proportion of how precise your model 

is in anticipating the real up -sides out of the absolute 

up-sides anticipated 

by your framework. Review gives the quantity of real 

up-sides caught by our model by grouping these as 

obvious positive. F- measure can give a harmony 

among accuracy and review, and it is liked over 
precision where information is uneven. 

 
 

Where, 

TP = True Positive, 

  

TN = True Negative FP = False Positive, FN = False 

Negative 

 

Data Information: 

CM1 dataset contains total 11141 entries which are 

given below 
  

 
Data Sample: 
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Classifier Technique: 

 

 
 

Table I: Comparison Result 

Classifier Precision Recall Accuracy 

SVM 99.34% 96.98% 96.90% 

LR 99.56% 99.24% 98.56% 

RF 100% 99.89% 99.86% 

Precision 

 
 

Figure 3: Graphical Represent of Precision 

  

Recall 

 
Figure 4: Graphical Represent of Recall 

 

Accuracy 

 

 
 

Figure 5: Graphical Represent of Accuracy 

 

Table II displays the results of Muhammad Azam et al. 

[1] and implemented method in terms of accuracy. 

Malarvizhi et al. [1] 

give an accuracy of 93.05% for SVM, 93.32% for LR 

and 93.86% for RF. The implemented method provides 

an accuracy of 

96.84% for SVM, 98.99% for LR and 99.90% for RF. 

Clearly, the implemented method is a 6.04% 
improvement accuracy compared to Muhammad Azam 

et al. [1]. Fig. 6 shows the graphical representation of 

the comparison result. 

 

Table II: Comparison Results 

Design Method Accuracy 
Muhammad Azam et al. 

[1] 
SVM 93.05% 

LR 93.32% 

RF 93.86% 

Implemented 

Design 
SVM 96.84% 

LR 98.99% 

RF 99.90% 

 
 

Accuracy 

 

 
 

Figure 6: Graphical Represent of Accuracy  method  

 

V. CONCLUSION 

In this paper By utilizing SDP, organizations can 
proactively identify and address potential software 

flaws, resulting in improved software performance and 

customer satisfaction. The application of this 

methodology enables companies to prioritize testing 

efforts an d allocate resources efficiently, ultimately 

leading to enhanced software reliability and reduced 

risks. Malarvizhi et al. [1] give an accuracy of 93.05% 

for SVM, 93.32% for LR and 93.86% for RF. The 

implemented method provides an accuracy of 96.84% 

for SVM, 98.99% for LR and 99.90% for RF. Clearly, 

the implemented method is a 6.04% improvement 

accuracy compared to Muhammad Azam et al. [1]. 
. 
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