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Abstract – Data mining techniques play a crucial role in extracting valuable insights from large datasets, 
with clustering methods being among the most widely used. The Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) algorithm is notable for its ability to identify clusters of varying shapes 

while effectively handling noise. However, DBSCAN faces limitations with high-dimensional data and 

varying density clusters, which restrict its performance in complex datasets. This thesis investigates methods 

to enhance the performance of DBSCAN, focusing on optimizing parameters, improving computational 

efficiency, and addressing density variations within clusters. We propose an advanced DBSCAN framework 

that integrates adaptive parameter selection and novel density-based heuristics to improve accuracy and 

scalability in high-dimensional data mining applications. Experimental results demonstrate that the 

enhanced DBSCAN algorithm achieves superior clustering accuracy, reduced computational time, and 

improved noise resilience compared to the traditional DBSCAN. These findings highlight the enhanced 

DBSCAN's potential as a robust clustering solution for real-world data mining tasks, particularly in 
scenarios involving large, complex datasets. 
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I. INTRODUCTION  

Clustering is a fundamental technique in data mining that 

organizes data into groups, or clusters, based on 

similarities within the data. Among the various clustering 

algorithms, the Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) algorithm is widely 

recognized for its ability to handle complex datasets, 

particularly those with varying densities and noise. 

Unlike traditional clustering methods such as k-means, 

DBSCAN does not require pre-defining the number of 

clusters, making it suitable for applications with 

unpredictable or unstructured data patterns. 

Despite its popularity, DBSCAN has certain limitations, 

particularly in high-dimensional and large datasets. The 

algorithm’s reliance on two critical parameters—epsilon 

(neighborhood radius) and minPts (minimum points per 
cluster)—is sensitive to data characteristics and can 

result in suboptimal clustering when not configured 

correctly. Furthermore, the high computational 

complexity of DBSCAN poses challenges for scalability, 

limiting its efficiency in handling extensive datasets in 

real-time applications. As the demand for efficient 

clustering techniques grows across diverse fields—such 

as anomaly detection, image segmentation, and spatial 

analysis—enhancing the performance and adaptability of 

DBSCAN is a pressing need. 

This thesis focuses on the enhancement of DBSCAN’s 

performance in the context of data mining, addressing 

key issues related to parameter sensitivity, computational 

efficiency, and noise resilience. By introducing 

optimized methods for parameter tuning and adaptive 

clustering, we aim to make DBSCAN more effective in 

handling diverse density variations and complex data 

structures. Our proposed improvements are validated 

through extensive testing on synthetic and real-world 

datasets, illustrating the effectiveness of the enhanced 

DBSCAN in terms of clustering accuracy, scalability, 

and computational speed. 

II.    UNDERSTANDING DATA MINING 

Data mining is a sophisticated analytical process used to 

discover patterns, correlations, and insights from large 

volumes of data. This field, which intersects with  

 

Figure 1 Categorization of data mining techniques. 
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statistics, machine learning, and database systems, 

involves extracting valuable information from datasets to 

support decision-making and enhance business 

intelligence. As organizations increasingly rely on data 

for strategic and operational decisions, the importance of 

data mining has grown significantly, transforming raw 

data into actionable knowledge. 

III. METHOD  

The proposed methodology for enhancing the 

performance of the DBSCAN clustering algorithm is 

structured into several key phases. Each phase focuses on 

addressing the limitations of the existing DBSCAN 

algorithm, ensuring that the enhancements are systematic 

and evidence-based. Advanced DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) 

clustering algorithm, including its key concepts, 

equations, and enhancements to improve its performance. 

DBSCAN is a density-based clustering algorithm that 
groups together points that are closely packed together 

(high density) while marking points that lie alone in low-

density regions as outliers. The algorithm is defined by 

two key parameters: 

 Epsilon (ε): The maximum distance between 

two points for them to be considered as part of 

the same neighborhood. 

 MinPts: The minimum number of points 

required to form a dense region. 

Algorithm Steps 

1. Neighbor Identification: For each point p in 
the dataset, identify all points within the 

distance ϵ\epsilonϵ using the equation: 

 

where D is the dataset and distance(p,q) is a 

distance metric (commonly Euclidean distance). 

2. Core Points: A point ppp is considered a core 
point if the number of points in its ε-

neighborhood is at least MinPts: 

 

3. Cluster Formation: 

o If p is a core point, create a new cluster 

and add p to this cluster. 

o For each point q in N(p,ϵ): 

 If q is not yet assigned to any 

cluster, assign it to the current 

cluster. 

 If q is a core point, expand the 

search and repeat the process. 

4. Noise Handling: 

o Points that are neither core points nor 
directly reachable from core points are 

classified as noise. 

Advanced DBSCAN Enhancements 

To improve the performance of the basic DBSCAN 

algorithm, several enhancements can be implemented, 

leading to what we can call Advanced DBSCAN. These 

enhancements focus on dynamic parameter selection, 
improved distance calculations, and more efficient 

neighborhood searches. 

Dynamic Parameter Selection 

Instead of using static values for ε and MinPts, we can 

use adaptive methods to calculate these parameters based 

on the dataset characteristics. 

 Adaptive Epsilon: Compute ε based on the k-

nearest neighbors of each point. For each point 

p, the distance to the kth nearest neighbor can be 

used to define ε: 

ϵp=distance(p,NNk(p)) 

 Adaptive MinPts: Define MinPts as a function 

of the local density: 

MinPtsp=⌈α⋅density(p)⌉ 

where α is a tunable parameter, and density can 

be calculated based on the number of points in 

the local neighborhood. 

Improved Distance Calculation 

Utilizing advanced distance metrics can enhance 

clustering accuracy, especially for high-dimensional data. 

 Cosine Similarity: For points p and q: 

 

3. Efficient Neighborhood Search 
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Utilizing spatial indexing structures such as R-trees or 

KD-trees can significantly reduce the computational 

overhead associated with neighbor searches. 

 R-Tree: A hierarchical data structure that 

allows for efficient spatial access methods, 

enabling rapid retrieval of points within the ε-

neighborhood. 

 Parallel Processing: Implement a parallelized 

version of the algorithm using multi-threading 

or distributed computing frameworks, allowing 

for simultaneous clustering of data partitions. 

Procedure: 

  Initialization: We start by initializing a Cluster 

ID, lists for Clusters and Noise, and a Visited 

array to keep track of which points have been processed. 

  Main Loop: We iterate through each point in the 

dataset: 

 If the point has already been visited, we skip it. 

 We perform a region query to find all 

neighboring points within the defined epsilon 

radius. 

 If the number of neighbors is less than minPts, 

we classify the point as noise. 

  Cluster Formation: If a point has enough neighbors: 

 We increment the cluster ID and start forming a 

new cluster. 

 We iterate through each neighbor, marking it as 

visited and expanding the neighborhood if it 

meets the criteria for density. 

  Cluster Filtering: After identifying clusters, we can 

filter out any clusters that are smaller than minPts, 

which helps in removing noise or less significant 

clusters. 

  Region Query Function: This helper function 

calculates the distance between the point and others in 

the dataset to find neighbors. 

 

(a)Voronoi diagram   (b)Delaunay graph (c) 

Remainder graph after           edge 

removal 

Figure 2 Step-2 Algorithm 

Algorithm: 

Advanced_DBSCAN 

Input:  
    Dataset D (points in n-dimensional space) 

    ε (epsilon) - maximum radius of neighborhood 

    minPts (minimum points) - minimum number of 

points to form a dense region 

 

Output:  

    Clusters (list of clusters), Noise (list of noise points) 

1. Initialize: 

   - Cluster ID = 0 

   - Create an empty list for Clusters and Noise 

   - Create a boolean array Visited[] to keep track of 
visited points, initialized to False 

 

2. For each point P in D: 

   a. If Visited[P] is True, continue to the next point 

   b. Mark Visited[P] as True 

   c. Neighbors = RegionQuery(P, ε) // Find neighbors 

within ε distance from P 

 

   d. If |Neighbors| < minPts: 

      - Add P to Noise // Point P is considered noise 

      continue 

   e. Cluster ID += 1 
   f. Create a new cluster C with Cluster ID 

   g. Add P to C 

 

   h. For each point Q in Neighbors: 

      i. If Visited[Q] is False: 

         - Mark Visited[Q] as True 

         - Neighbors_Q = RegionQuery(Q, ε) // Find 

neighbors of Q 

 

      ii. If |Neighbors_Q| >= minPts: 

         - Add Neighbors_Q to Neighbors // Expand the 
neighborhood 

 

      iii. If Q is not in any cluster: 

         - Add Q to C // Add Q to the current cluster 

 

3. For each cluster C: 

   a. If |C| < minPts: 

      - Remove C from Clusters // Remove small clusters 

that do not meet criteria 

 

4. Return Clusters, Noise 
 

Function RegionQuery(P, ε): 

   - Initialize empty list of neighbors 

   - For each point O in D: 
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      if Distance(P, O) <= ε: 

         Add O to neighbors 

   return neighbors 

 

 

Figure 3 Range Counting 

 

Figure 4  Correctness proof of our Step-2 algorithm 

 

IV. RESULT 

The performance of the algorithm is evaluated based on a 

series of metrics that reflect its efficacy in identifying 
clusters within the given dataset.  

(a) running time                        (b) running time / n log n 

 

(c) number of distance computations / n 

Figure 5: Gaussian strips, variable n 

The results are compared with those from the traditional 

DBSCAN to highlight the enhancements achieved 

through the proposed modifications. For the strip 

datasets, which include both uniform and Gaussian 

variations, we determined the parameters ϵ and minPts to 

ensure the algorithm accurately identifies each strip as a 
distinct cluster while recognizing noise as outliers. Next, 

we aim to evaluate the performance of the algorithms by 

varying the value of  

ϵ. The results of this experiment using the uniform fill 

dataset are presented in Figure. 

 

        (a) original                                     (b) improved 

 

Figure 6: Uniform fill, variable ε 

As illustrated in Figure 6 a, the performance of the 

original DBSCAN algorithm remains largely unaffected 

by changes in the value of ϵ\epsilonϵ. This is due to the 

fact that the original algorithm conducts a complete scan 

of the entire dataset for each point during the range 

query, regardless of the ϵ value. 

In contrast, Figure 6b reveals more intriguing results, 

demonstrating that both the new algorithm and the 

original algorithm with grid are highly sensitive to 

variations in ϵ. Typically, the original grid-based 

algorithm benefits from a smaller ϵ value, as a larger 

ϵ\epsilonϵ leads to an increased number of points within 
each grid cell, thereby making the range query more 

computationally intensive. Conversely, the new 

algorithm benefits from a larger ϵ, as having more points 

within a grid cell increases the likelihood of locating a 

grid cell containing more than the minimum number of 

points, minPts. The running times of both algorithms 

converge when ϵ\epsilonϵ is around 1.5. However, at this 

value, the algorithm tends to identify multiple small 

clusters, which is not the intended outcome. When ϵ is 
set to 2 or higher, we achieve the desired result of 

recognizing all points as a single cluster. At this point, 

the new algorithm demonstrates superior performance 

compared to the original grid-based version. For the 

other data sets figure 7, 8,9 and 10. 
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(a) original                                          (b) improved 

Figure 7: Uniform discs, variable ε 

 

(a) original                                        (b) improved 

Figure 8: Gaussian discs, variable ε 

 

             (a) original                 (b) improved 

Figure 9: Uniform strips, variable ε 

 

(a) original                              (b) improved  

Figure 10: Gaussian strips, variable ε 

 

(a) original                            (b) improved  

Figure 5.11: Uniform fill, variable minP ts 

In the following experiment, we aimed to evaluate the 

algorithms' performance with varying values of minPts. 

The results for the uniform fill dataset are presented in 

Figure 12. Consistent with the observations in Figure 

13a, Figure 13a indicates that the original DBSCAN 

algorithm shows minimal sensitivity to changes in 

minPts. 

Figure 13b illustrates that the grid-based version of the 

original algorithm remains fairly stable for minPts≤8. 

However, when 8<minPts ≤32, the algorithm experiences 

a slowdown as the minPts value increases. While we 

cannot pinpoint the exact cause of this behavior, we note 
that for minPts≤8, the algorithm tends to yield a single 

large cluster. In contrast, when 8<minPts ≤32, the 

number of resultant clusters increases while their sizes 

decrease. The new algorithm also experiences increased 

processing time with higher values of minPts, although it 

remains stable once minPts reaches 16. One of the 

advantages of this new approach is its ability to bypass 

certain distance computations when the number of points 

within a cell exceeds minPts. As minPts increases, the 

number of such cells diminishes until it eventually 

reaches zero. Additionally, it is important to note that 

when examining points in neighboring cells, the new 
algorithm terminates its search once it has identified at 

least minPts points within a distance of ϵ\epsilonϵ. 

Therefore, if minPts is set too high, the algorithm's 

responsiveness to changes in minPts may diminish. 

 

(a) original                     (b) improved  

Figure 12: Uniform discs, variable minPts 
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                   (a) original             (b) improved 

Figure 13: Uniform strips, variable minPts 

 

          (a) original                           (b) improved 

Figure 14: Gaussian discs, variable minP ts 

 

 

       (a) original                           (b) improved 

Figure 15: Gaussian strips, variable minP ts 

V. CONCLUSION 

This paper compared the performance of the newly 

developed algorithm against the "original DBSCAN with 

grid" approach, focusing specifically on their running 

times. The findings indicate that the new algorithm 

consistently outperforms the original grid-based version 

across various test scenarios. Notably, as the value of 

ϵ\epsilonϵ increases, the efficiency of the new algorithm 
improves, suggesting that starting with a larger 

ϵ\epsilonϵ may enhance clustering performance. It is 

advisable to first explore higher values of ϵ\epsilonϵ and 

then gradually reduce it to identify the optimal clustering 
outcome. 

Additionally, our experiments revealed that lower values 

of minPts correspond to faster execution times for the 

new algorithm. Consequently, an effective strategy for 

clustering would be to initiate the process with a smaller 

minPts value and progressively increase it until a 
satisfactory clustering result is achieved. 
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