
International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 11, November. 2024, pp. 108-114 ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[108]

Optimizing DBSCAN Density-Based Clustering Algorithm For

Enhanced Performance in Data Mining
Uvaish Akhter1, Mr. Jeetendra Singh Yadav2

1M. Tech., Scholar, uvaishakhter0@gmail.com, CSE Bhabha University, Bhopal, India
2Assis. Prof., jeetendra2201@gmail.com, RKDFCE, Bhopal, India

Abstract – Data mining techniques play a crucial role in extracting valuable insights from large datasets,
with clustering methods being among the most widely used. The Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) algorithm is notable for its ability to identify clusters of varying shapes

while effectively handling noise. However, DBSCAN faces limitations with high-dimensional data and

varying density clusters, which restrict its performance in complex datasets. This thesis investigates methods

to enhance the performance of DBSCAN, focusing on optimizing parameters, improving computational

efficiency, and addressing density variations within clusters. We propose an advanced DBSCAN framework

that integrates adaptive parameter selection and novel density-based heuristics to improve accuracy and

scalability in high-dimensional data mining applications. Experimental results demonstrate that the

enhanced DBSCAN algorithm achieves superior clustering accuracy, reduced computational time, and

improved noise resilience compared to the traditional DBSCAN. These findings highlight the enhanced

DBSCAN's potential as a robust clustering solution for real-world data mining tasks, particularly in
scenarios involving large, complex datasets.

Keywords: Data Mining, Clustering Algorithms, DBSCAN (Density-Based Spatial Clustering of

Applications with Noise), Performance Optimization, Density Variations, High-Dimensional Data, Noise

Handling, Parameter Tuning, Adaptive Clustering

I. INTRODUCTION

Clustering is a fundamental technique in data mining that

organizes data into groups, or clusters, based on

similarities within the data. Among the various clustering

algorithms, the Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) algorithm is widely

recognized for its ability to handle complex datasets,

particularly those with varying densities and noise.

Unlike traditional clustering methods such as k-means,

DBSCAN does not require pre-defining the number of

clusters, making it suitable for applications with

unpredictable or unstructured data patterns.

Despite its popularity, DBSCAN has certain limitations,

particularly in high-dimensional and large datasets. The

algorithm’s reliance on two critical parameters—epsilon

(neighborhood radius) and minPts (minimum points per
cluster)—is sensitive to data characteristics and can

result in suboptimal clustering when not configured

correctly. Furthermore, the high computational

complexity of DBSCAN poses challenges for scalability,

limiting its efficiency in handling extensive datasets in

real-time applications. As the demand for efficient

clustering techniques grows across diverse fields—such

as anomaly detection, image segmentation, and spatial

analysis—enhancing the performance and adaptability of

DBSCAN is a pressing need.

This thesis focuses on the enhancement of DBSCAN’s

performance in the context of data mining, addressing

key issues related to parameter sensitivity, computational

efficiency, and noise resilience. By introducing

optimized methods for parameter tuning and adaptive

clustering, we aim to make DBSCAN more effective in

handling diverse density variations and complex data

structures. Our proposed improvements are validated

through extensive testing on synthetic and real-world

datasets, illustrating the effectiveness of the enhanced

DBSCAN in terms of clustering accuracy, scalability,

and computational speed.

II. UNDERSTANDING DATA MINING

Data mining is a sophisticated analytical process used to

discover patterns, correlations, and insights from large

volumes of data. This field, which intersects with

Figure 1 Categorization of data mining techniques.

DOI Member 236.24.428

https://ijaece.com/paper-doi/236.24.428

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 11, November. 2024, pp. 108-114 ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[109]

statistics, machine learning, and database systems,

involves extracting valuable information from datasets to

support decision-making and enhance business

intelligence. As organizations increasingly rely on data

for strategic and operational decisions, the importance of

data mining has grown significantly, transforming raw

data into actionable knowledge.

III. METHOD

The proposed methodology for enhancing the

performance of the DBSCAN clustering algorithm is

structured into several key phases. Each phase focuses on

addressing the limitations of the existing DBSCAN

algorithm, ensuring that the enhancements are systematic

and evidence-based. Advanced DBSCAN (Density-

Based Spatial Clustering of Applications with Noise)

clustering algorithm, including its key concepts,

equations, and enhancements to improve its performance.

DBSCAN is a density-based clustering algorithm that
groups together points that are closely packed together

(high density) while marking points that lie alone in low-

density regions as outliers. The algorithm is defined by

two key parameters:

 Epsilon (ε): The maximum distance between

two points for them to be considered as part of

the same neighborhood.

 MinPts: The minimum number of points

required to form a dense region.

Algorithm Steps

1. Neighbor Identification: For each point p in
the dataset, identify all points within the

distance ϵ\epsilonϵ using the equation:

where D is the dataset and distance(p,q) is a

distance metric (commonly Euclidean distance).

2. Core Points: A point ppp is considered a core
point if the number of points in its ε-

neighborhood is at least MinPts:

3. Cluster Formation:

o If p is a core point, create a new cluster

and add p to this cluster.

o For each point q in N(p,ϵ):

 If q is not yet assigned to any

cluster, assign it to the current

cluster.

 If q is a core point, expand the

search and repeat the process.

4. Noise Handling:

o Points that are neither core points nor
directly reachable from core points are

classified as noise.

Advanced DBSCAN Enhancements

To improve the performance of the basic DBSCAN

algorithm, several enhancements can be implemented,

leading to what we can call Advanced DBSCAN. These

enhancements focus on dynamic parameter selection,
improved distance calculations, and more efficient

neighborhood searches.

Dynamic Parameter Selection

Instead of using static values for ε and MinPts, we can

use adaptive methods to calculate these parameters based

on the dataset characteristics.

 Adaptive Epsilon: Compute ε based on the k-

nearest neighbors of each point. For each point

p, the distance to the kth nearest neighbor can be

used to define ε:

ϵp=distance(p,NNk(p))

 Adaptive MinPts: Define MinPts as a function

of the local density:

MinPtsp=⌈α⋅density(p)⌉

where α is a tunable parameter, and density can

be calculated based on the number of points in

the local neighborhood.

Improved Distance Calculation

Utilizing advanced distance metrics can enhance

clustering accuracy, especially for high-dimensional data.

 Cosine Similarity: For points p and q:

3. Efficient Neighborhood Search

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 11, November. 2024, pp. 108-114 ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[110]

Utilizing spatial indexing structures such as R-trees or

KD-trees can significantly reduce the computational

overhead associated with neighbor searches.

 R-Tree: A hierarchical data structure that

allows for efficient spatial access methods,

enabling rapid retrieval of points within the ε-

neighborhood.

 Parallel Processing: Implement a parallelized

version of the algorithm using multi-threading

or distributed computing frameworks, allowing

for simultaneous clustering of data partitions.

Procedure:

 Initialization: We start by initializing a Cluster

ID, lists for Clusters and Noise, and a Visited

array to keep track of which points have been processed.

 Main Loop: We iterate through each point in the

dataset:

 If the point has already been visited, we skip it.

 We perform a region query to find all

neighboring points within the defined epsilon

radius.

 If the number of neighbors is less than minPts,

we classify the point as noise.

 Cluster Formation: If a point has enough neighbors:

 We increment the cluster ID and start forming a

new cluster.

 We iterate through each neighbor, marking it as

visited and expanding the neighborhood if it

meets the criteria for density.

 Cluster Filtering: After identifying clusters, we can

filter out any clusters that are smaller than minPts,

which helps in removing noise or less significant

clusters.

 Region Query Function: This helper function

calculates the distance between the point and others in

the dataset to find neighbors.

(a)Voronoi diagram (b)Delaunay graph (c)

Remainder graph after edge

removal

Figure 2 Step-2 Algorithm

Algorithm:

Advanced_DBSCAN

Input:
 Dataset D (points in n-dimensional space)

 ε (epsilon) - maximum radius of neighborhood

 minPts (minimum points) - minimum number of

points to form a dense region

Output:

 Clusters (list of clusters), Noise (list of noise points)

1. Initialize:

 - Cluster ID = 0

 - Create an empty list for Clusters and Noise

 - Create a boolean array Visited[] to keep track of
visited points, initialized to False

2. For each point P in D:

 a. If Visited[P] is True, continue to the next point

 b. Mark Visited[P] as True

 c. Neighbors = RegionQuery(P, ε) // Find neighbors

within ε distance from P

 d. If |Neighbors| < minPts:

 - Add P to Noise // Point P is considered noise

 continue

 e. Cluster ID += 1
 f. Create a new cluster C with Cluster ID

 g. Add P to C

 h. For each point Q in Neighbors:

 i. If Visited[Q] is False:

 - Mark Visited[Q] as True

 - Neighbors_Q = RegionQuery(Q, ε) // Find

neighbors of Q

 ii. If |Neighbors_Q| >= minPts:

 - Add Neighbors_Q to Neighbors // Expand the
neighborhood

 iii. If Q is not in any cluster:

 - Add Q to C // Add Q to the current cluster

3. For each cluster C:

 a. If |C| < minPts:

 - Remove C from Clusters // Remove small clusters

that do not meet criteria

4. Return Clusters, Noise

Function RegionQuery(P, ε):

 - Initialize empty list of neighbors

 - For each point O in D:

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 11, November. 2024, pp. 108-114 ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[111]

 if Distance(P, O) <= ε:

 Add O to neighbors

 return neighbors

Figure 3 Range Counting

Figure 4 Correctness proof of our Step-2 algorithm

IV. RESULT

The performance of the algorithm is evaluated based on a

series of metrics that reflect its efficacy in identifying
clusters within the given dataset.

(a) running time (b) running time / n log n

(c) number of distance computations / n

Figure 5: Gaussian strips, variable n

The results are compared with those from the traditional

DBSCAN to highlight the enhancements achieved

through the proposed modifications. For the strip

datasets, which include both uniform and Gaussian

variations, we determined the parameters ϵ and minPts to

ensure the algorithm accurately identifies each strip as a
distinct cluster while recognizing noise as outliers. Next,

we aim to evaluate the performance of the algorithms by

varying the value of

ϵ. The results of this experiment using the uniform fill

dataset are presented in Figure.

 (a) original (b) improved

Figure 6: Uniform fill, variable ε

As illustrated in Figure 6 a, the performance of the

original DBSCAN algorithm remains largely unaffected

by changes in the value of ϵ\epsilonϵ. This is due to the

fact that the original algorithm conducts a complete scan

of the entire dataset for each point during the range

query, regardless of the ϵ value.

In contrast, Figure 6b reveals more intriguing results,

demonstrating that both the new algorithm and the

original algorithm with grid are highly sensitive to

variations in ϵ. Typically, the original grid-based

algorithm benefits from a smaller ϵ value, as a larger

ϵ\epsilonϵ leads to an increased number of points within
each grid cell, thereby making the range query more

computationally intensive. Conversely, the new

algorithm benefits from a larger ϵ, as having more points

within a grid cell increases the likelihood of locating a

grid cell containing more than the minimum number of

points, minPts. The running times of both algorithms

converge when ϵ\epsilonϵ is around 1.5. However, at this

value, the algorithm tends to identify multiple small

clusters, which is not the intended outcome. When ϵ is
set to 2 or higher, we achieve the desired result of

recognizing all points as a single cluster. At this point,

the new algorithm demonstrates superior performance

compared to the original grid-based version. For the

other data sets figure 7, 8,9 and 10.

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 11, November. 2024, pp. 108-114 ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[112]

(a) original (b) improved

Figure 7: Uniform discs, variable ε

(a) original (b) improved

Figure 8: Gaussian discs, variable ε

 (a) original (b) improved

Figure 9: Uniform strips, variable ε

(a) original (b) improved

Figure 10: Gaussian strips, variable ε

(a) original (b) improved

Figure 5.11: Uniform fill, variable minP ts

In the following experiment, we aimed to evaluate the

algorithms' performance with varying values of minPts.

The results for the uniform fill dataset are presented in

Figure 12. Consistent with the observations in Figure

13a, Figure 13a indicates that the original DBSCAN

algorithm shows minimal sensitivity to changes in

minPts.

Figure 13b illustrates that the grid-based version of the

original algorithm remains fairly stable for minPts≤8.

However, when 8<minPts ≤32, the algorithm experiences

a slowdown as the minPts value increases. While we

cannot pinpoint the exact cause of this behavior, we note
that for minPts≤8, the algorithm tends to yield a single

large cluster. In contrast, when 8<minPts ≤32, the

number of resultant clusters increases while their sizes

decrease. The new algorithm also experiences increased

processing time with higher values of minPts, although it

remains stable once minPts reaches 16. One of the

advantages of this new approach is its ability to bypass

certain distance computations when the number of points

within a cell exceeds minPts. As minPts increases, the

number of such cells diminishes until it eventually

reaches zero. Additionally, it is important to note that

when examining points in neighboring cells, the new
algorithm terminates its search once it has identified at

least minPts points within a distance of ϵ\epsilonϵ.

Therefore, if minPts is set too high, the algorithm's

responsiveness to changes in minPts may diminish.

(a) original (b) improved

Figure 12: Uniform discs, variable minPts

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 11, November. 2024, pp. 108-114 ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[113]

 (a) original (b) improved

Figure 13: Uniform strips, variable minPts

 (a) original (b) improved

Figure 14: Gaussian discs, variable minP ts

 (a) original (b) improved

Figure 15: Gaussian strips, variable minP ts

V. CONCLUSION

This paper compared the performance of the newly

developed algorithm against the "original DBSCAN with

grid" approach, focusing specifically on their running

times. The findings indicate that the new algorithm

consistently outperforms the original grid-based version

across various test scenarios. Notably, as the value of

ϵ\epsilonϵ increases, the efficiency of the new algorithm
improves, suggesting that starting with a larger

ϵ\epsilonϵ may enhance clustering performance. It is

advisable to first explore higher values of ϵ\epsilonϵ and

then gradually reduce it to identify the optimal clustering
outcome.

Additionally, our experiments revealed that lower values

of minPts correspond to faster execution times for the

new algorithm. Consequently, an effective strategy for

clustering would be to initiate the process with a smaller

minPts value and progressively increase it until a
satisfactory clustering result is achieved.

References

[1] Yang, Chen Qian, Haomiao Li, Yuchao Gao, Jinran

Wu, Chan-Juan Liu & Shangrui Zhao, “An efficient

DBSCAN optimized by arithmetic optimization

algorithm with opposition-based learning”, Volume

78, pages 19566–19604, (2022), Springer.

[2] Yuxian Duan; Changyun Liu; Song Li, “Battlefield

Target Grouping by a Hybridization of an Improved

Whale Optimization Algorithm and Affinity
Propagation”, IEEE Access (Volume: 9), 2021, DOI:

https://doi.org/10.1109/ACCESS.2021.3067729.

[3] Stephen Akatore Atimbire, Justice Kwame Appati &

Ebenezer Owusu, “Empirical exploration of whale

optimisation algorithm for heart disease prediction”,

Scientific Reports volume 14, Article number: 4530

(2024).

[4] Shaoyuan Weng, Zimeng Liu, Zongwen Fan &

Guoliang Zhang, “A whale optimization algorithm-

based ensemble model for power consumption

prediction”, 2024, Springer.

[5] Rami Sihwail, Mariam Al Ghamri, Dyala Ibrahim,
“An Enhanced Model of Whale Optimization

Algorithm and K-nearest Neighbors for Malware

Detection”, Vol.17, No.3, 2024, International Journal

of Intelligent Engineering and Systems, DOI:

10.22266/ijies2024.0630.47.

[6] K M Archana Patel & Prateek Thakral, “The best

clustering algorithms in data mining”, ISBN:978-1-

5090-0396-9, 2016, IEEE, DOI:

10.1109/ICCSP.2016.7754534.

[7] Manish Verma, Mauly Srivastava, Neha Chack, Atul

Kumar Diswar, Nidhi Gupta, “A Comparative Study
of Various Clustering Algorithms in Data Mining”,

ISSN: 2248-9622, Vol. 2, Issue 3, 2012, IJERA.

[8] Ashish Dutt, Saeed Aghabozrgi, Maizatul Akmal

Binti Ismail, and Hamidreza Mahroeian, “Clustering

Algorithms Applied in Educational Data Mining”,

Vol. 5, No. 2, March 2015, International Journal of

Information and Electronics Engineering, DOI:

10.7763/IJIEE.2015.V5.513.

[9] G. Biswas; J.B. Weinberg; D.H. Fisher, “ITERATE:

a conceptual clustering algorithm for data mining”,

Volume: 28, Issue: 2, 2002, IEEE, DOI:
10.1109/5326.669556.

[10] Grabmeier and JRudolph A(2019)Techniques of

Cluster Algorithms in Data MiningData Mining and

Knowledge Discovery10.1023/A:10163084046276:4

(303-360)Online publication date: 1-Jun-2019. DOI:

https://dl.acm.org/doi/10.1023/A%3A1016308404627

[11] Syed Thouheed Ahmed, S. Sreedhar Kumar, B.

Anusha, P. Bhumika, M. Gunashree & B. Ishwarya,

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 11, November. 2024, pp. 108-114 ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[114]

“A Generalized Study on Data Mining and Clustering

Algorithms”, pp 1121–1129, Springer Link.

[12] Dingsheng Deng, “DBSCAN Clustering Algorithm

Based on Density”, ISBN:978-1-7281-9628-2, 2021,

IEEE, DOI: 10.1109/IFEEA51475.2020.00199.

[13] Albasheer Fawzia Omer, H. Ahmed Mohammed, M.

Ahmed Awadallah, Zia Khan, Said Ul Abrar & Mian
Dawood Shah, “Big Data Mining Using K-Means and

DBSCAN Clustering Techniques”, SBD,volume 111,

pp 231–246, 02 September 2022.

[14] Kawtar Sabor, Damien Jougnot, Roger Guerin,

Barthélémy Steck, Jean-Marie Henault, Louis Apffel,

Denis Vautrin, “A data mining approach for improved

interpretation of ERT inverted sections using the

DBSCAN clustering algorithm”, Geophysical Journal

International, Volume 225, Issue 2, May 2021, Pages

1304–1318, DOI:

https://doi.org/10.1093/gji/ggab023.
[15] Fang Huang, Qiang Zhu, Ji Zhou, Jian Tao,

Xiaocheng Zhou, Du Jin, Xicheng Tan and Lizhe

Wang, “Research on the Parallelization of the

DBSCAN Clustering Algorithm for Spatial Data

Mining Based on the Spark Platform”, Volume 9,

Issue 12, 2017, 9(12), 1301, MPDI, DOI:

https://doi.org/10.3390/rs9121301.

[16] Cheng-Fa Tsai; Chun-Yi Sung, “DBSCALE: An

efficient density-based clustering algorithm for data

mining in large databases”, ISBN:978-1-4244-7969-

6, 2010, IEEE, DOI: 10.1109/PACCS.2010.5627040.

[17] Suresh kurumalla, P srinivasa rao, “K-Nearest
Neighbor Based Dbscan Clustering Algorithm For

Image Segmentation”, 31st October 2016. Vol.92.

No.2, ISSN: 1992-8645, Journal of Theoretical and

Applied Information Technology.

	I. Introduction
	II. Understanding Data Mining
	III. Method
	Algorithm Steps
	Advanced DBSCAN Enhancements
	Dynamic Parameter Selection
	Improved Distance Calculation
	3. Efficient Neighborhood Search

	IV. Result
	V. Conclusion
	This paper compared the performance of the newly developed algorithm against the "original DBSCAN with grid" approach, focusing specifically on their running times. The findings indicate that the new algorithm consistently outperforms the original gri...
	Additionally, our experiments revealed that lower values of minPts correspond to faster execution times for the new algorithm. Consequently, an effective strategy for clustering would be to initiate the process with a smaller minPts value and progress...
	References

