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Dynamic Neural Network Based Theft Detection Algorithm For Smart 

Security Systems   

 
Abstract – This paper  explores the development and implementation of a dynamic neural network-based 

theft detection algorithm tailored for smart security systems. Leveraging the advanced capabilities of neural 

networks, the proposed algorithm aims to enhance the accuracy and reliability of detecting theft-related 

activities in various environments. The model is trained and tested using the XGBoost method, demonstrating 

an overall accuracy of 95%. This high level of performance is reflected in the precise identification of 

multiple event classes within the security system. For instance, the algorithm achieved near-perfect 

precision, recall, and F1-scores in most event categories, with Class 1 and Class 3 recording perfect metrics 

across the board. Despite some variance in performance, particularly in Class 5, the overall results affirm 

the effectiveness of the dynamic neural network approach in improving theft detection capabilities. The 
macro and weighted average precision, recall, and F1-scores further support the robustness of the model. 

This research contributes to the growing field of smart security systems by providing a sophisticated and 

reliable solution for real-time theft detection, offering significant potential for practical application in 

enhancing security measures..  

Keywords: Dynamic Neural Networks, Theft Detection Algorithm, Smart Security Systems, XGBoost 

Method, Security Enhancement  

 

 

I. INTRODUCTION  

The rapid advancements in technology have led to the 

widespread adoption of smart security systems in various 
domains, including residential, commercial, and 

industrial sectors. These systems, powered by the 

Internet of Things (IoT), artificial intelligence (AI), and 

machine learning (ML), offer real-time monitoring and 

automated decision-making capabilities, thereby 

enhancing security measures and response times. 

However, as these systems become more sophisticated, 

so do the methods employed by malicious actors, 

necessitating the development of more advanced and 

reliable theft detection algorithms. 

 
Traditional security systems often rely on predefined 

rules and thresholds to detect suspicious activities. While 

effective to some extent, these systems are limited in 

their ability to adapt to new and evolving threats. They 

may also produce a high rate of false positives, leading to 

unnecessary alerts and potential desensitization of 

security personnel. To address these challenges, there is a 

growing interest in leveraging dynamic neural networks 

for theft detection in smart security systems. 

 

Dynamic neural networks offer several advantages over 
traditional methods. They are capable of learning from 

vast amounts of data, adapting to new patterns of 

behavior, and improving their detection accuracy over 

time. These networks can be trained to recognize a wide 

range of activities, including normal and abnormal 

behaviors, making them particularly well-suited for 

complex environments where the distinction between 

benign and malicious actions may not be clear-cut. 

 

This paper focuses on the development of a dynamic 

neural network-based theft detection algorithm designed 

specifically for smart security systems. The algorithm 
utilizes the XGBoost method, a powerful and efficient 

gradient boosting technique, to enhance the model's 

predictive accuracy and robustness. The primary 

objective is to create a system that can accurately identify 

and classify different events, particularly theft-related 

activities, with minimal false positives and high 

precision. 

 

The study involves extensive testing and performance 

evaluation of the proposed algorithm across multiple 

event classes. The results demonstrate the algorithm's 

effectiveness, with an overall accuracy of 95%, and 
highlight its potential for real-world applications in 

enhancing theft detection capabilities in smart security 

systems. By leveraging advanced neural network 

techniques, this research contributes to the ongoing 

efforts to develop more intelligent, adaptive, and reliable 

security solutions. 

II.  DYNAMIC NEURAL NETWORK  

 

A dynamic neural network is an advanced type of 

artificial neural network designed to adapt and respond to 

changing environments and inputs in real-time. Unlike 

traditional static neural networks, which have fixed 

architectures and weights once trained, dynamic neural 

networks can modify their structure, parameters, and 
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connections as they process new information. This 

adaptability makes them particularly suited for 

applications requiring real-time data analysis and 

decision-making. 

 
Figure 1. Dynamic Neural Network block diagram 

Dynamic neural networks are characterized by their 

ability to handle sequential and temporal data, making 

them effective for tasks where the input data is time-

dependent or evolves over time. They can adjust to new 

patterns and information, allowing them to continuously 

learn and improve their performance. This adaptability is 
crucial for applications such as speech recognition, 

financial market prediction, and, notably, security 

systems, where conditions and threats can change 

rapidly. 

III. METHOD  

To begin, the training data are segmented into a large 

number of subgroups by the use of ambiguous clustering 

techniques using ANN. A broad range of neural networks 
(ANNs)  are  trained  using  a  wide  variety of  data  

subsets  as  a  direct  result  of  this.  A replacement 

artificial neural network will, before creating the ultimate 

outcome, first determine the membership grade of the 

subgroups it has located and then connect those subsets 

together. Figure 3.3 depicts the artificial neural networks 

in their entirety. [Citation needed] In some machine 

learning frameworks, the use of feed forward artificial 

neural networks, commonly referred to as ANNs, may be 

used not only for training but also for testing objectives. 

ANNs are also known as artificial neural networks. 
Step - I - highlighted and hand-picked data training 

 

Step II: An ANN model is used for each of the different 

training sets in order to train for training using particular 

teaching algorithms I = 1,2, k). This is done in order to 

train for training. The ANN model, which serves as the 

basis for subsequent models. The third phase involves the 

researchers simulating each ANN by using the whole In 

an effort to bring down the total mistake rate, TR training 

set was used. The next step that researchers often take to 

validate their findings is to use the membership grade 

that was supplied by the ambiguous cluster module. This 
is done so that they may compare their findings to the 

accepted value.. This is done so that the researchers may 

compare their findings to the grade that was generated by 

the module. 

After then, researchers often combine all of the data 

together (ANN) for usage. The researchers immediately 

feed the data from the test set of ANNs and then retrieve 

the output from those models while they are phase. The 

final result will be generated by ambiguous aggregate 

module depending on the data that was submitted before. 

There necessary lawsuits that take place throughout the 

course of the 3 phases of the 

 

ANN structure. 
 

   The following summarises each of these lawsuits: 

Produce a number of different training subsets using the 

initial training dataset TR; 

   Produce a number of different models ANN using the 

training subsets; 

 

   Produce a method to gather a number of outcomes 

generated by a number of base models ANN. 

 

In artificial neural networks, the assessment of a gradient 

for the weights that will be included in the network is 
done via the use of a system known as back-propagation. 

In most cases, training is performed on deep neural 

networks, which is a term that denotes neural networks 

that have more than one hidden unit. The two most 

prevalent kinds of neural networks are known as feed 

forward and backward neural networks. There are three 

primary elements that make up neural networks. 

 

 

 Input Nodes: The "Input Layer" is also referred to as 

the "Input Nodes," which are the nodes which bring data 
from outside the world into the network. 

 Hidden Nodes: Hidden nodes do not have any type of 

connection or interaction with the surface of the globe in 

any way, shape, or form (hence the name is "hidden"). 

They perform operations on the data based on the 

information that is provided by the input nodes and then 

transmit that data to the nodes that will serve as outputs. 

The accumulation of nodes that have been rendered 

invisible produces what is known as a "hidden layer." 

There may be simply one input layer and one output 

layer in a feed forward network, but the network may 

include zero, one, or more hidden layers. 
  

 
 

Figure 2 The procedure of different layers of the back 

proportion 
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Output Nodes — The processing and transportation of 

data from the network to the outside world is the 

responsibility of the Output nodes, which are sometimes 

referred to as the "Output Layer." These nodes are 

referred to collectively as the "Output nodes" in the 
network." 

Back In coping with noisy data, back propagation 

performs rather well. A trend that flew under the radar 

led to a positive answer. The most suitable method is 

referred to as iterative back propagation. The back 

propagation method is built on top of these fundamental 

characteristics as its basis. 

D - Data 

 

T - Target 

 

W - Weights 
 

B - Bias. 

 

There are 3  main stages of back propagation 

 

    Feed forward network, data flow on each node in 

cross section way. 

 

    Fully network, data flow only straight forward way. 

  

 

 
 

  

Figure 3 The technique proportion 

 
Extreme Gradient Boosting (XGBoost) is an advanced 

implementation of gradient boosting, designed for speed 

and performance. The core idea of gradient boosting is to 

build a model in a stage-wise fashion, combining the 

predictions of multiple weak learners (typically decision 

trees) to create a strong learner. Here's a detailed 

explanation of the theory and equations behind XGBoost: 

 

Gradient boosting constructs additive models in a 

forward stage-wise manner. It aims to minimize a given 

loss function by adding weak learners (e.g., decision 

trees) sequentially. The general form of a boosted model 

can be written as: 

 
 where y_i  is the predicted value for instance i, h_m is 

the m-th weak learner, and gamma_m is the weight 

assigned to the m-th learner. 

Objective Function 

 

The objective function in gradient boosting consists of 

two parts: the loss function and a regularization term to 
control the complexity of the model. The objective 

function at the t-th iteration is: 

 
 Where L is the loss function, and Omega is the 

regularization term. 
 

To minimize the objective function, XGBoost uses an 

additive model approach. At each iteration, it adds a new 

function (tree) to the model: 

 
The loss function can be approximated using a second-

order Taylor expansion: 

 
XGBoost introduces a regularization term to penalize the 

complexity of the trees 

 

To find the best tree structure, XGBoost evaluates all 

possible splits and selects the one that maximizes the 

gain, defined as the reduction in loss: 

 
 where G and H are the sums of the gradients and 

Hessians, respectively, for the current node, and G_L, 

H_L, G_R, and H_R are the sums of the gradients and 

Hessians for the left and right child nodes after the split. 

 

The weight for each leaf is calculated as: 

 
  

The final prediction for an instance i is obtained by 

summing the contributions from all trees: 
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IV. RESULT 

The dataset is divided into multiple files based on 
specific dates, each unbalanced in nature. It is 
crucial for users to preprocess and balance the 
dataset to ensure higher-quality predictions in 
machine learning models. This dataset serves as a 

valuable resource for deep learning applications aimed at 

detecting and analyzing DDoS attacks, providing rich, 

detailed logs crucial for developing and testing predictive 

models. 

Table: 1 Data distribution 

 
 

Data Pre Processing 

In data preprocessing steps we prepare datasets for 

machine learning tasks, specifically in the context of 

threat detection. The process begins with data cleaning, 

where we create a function that handles infinite and null 

values. In this, first, any instances of positive and 

negative infinity are replaced with NaN (null) values. 

Following this, all rows containing null values are 

removed, and then we verify changes again. 
 

 

 
Figure 4 Data Pre Processing 

Here's a bar graph representing the count of each label. 

Then we encode the label into binary values, which are 

then defined to create a new column called "Threat". This 

column is derived from the "Label" column, encoding it 

into two categories: "Benign" for benign instances and 
"Malicious" for all other instances. The unique values 

and their counts in the "Threat" column are checked to 

ensure correct encoding. 

 

To address class imbalance, we employ 

`RandomUnderSampler` from the `imblearn` library. 

This function separates the features (X) from the labels 

(y), applies random undersampling to balance the classes, 

and then combines the balanced features and labels back 

into a single DataFrame. The new shape of the 

DataFrame and the counts of each label are checked to 
confirm the balancing. 

 

After balancing, duplicate columns are removed from the 

DataFrame by dropping them based on their names 

stored in a variable `duplicates`.  

 

To address multicollinearity, a set `correlated_col` is 

created to store the names of highly correlated columns. 

The code iterates through the correlation matrix, and for 

each column, it checks if the absolute correlation with 

previously checked columns exceeds a threshold of 0.90. 

If so, the column is marked as correlated and its name is 
added to the set. These highly correlated columns are 

then dropped from the DataFrame, and the shape of the 

DataFrame confirms the removal. 

 

Subsequently, the DataFrame is split into training and 

testing sets using the `train_test_split` function from 

`sklearn.model_selection`. The split is performed in a 

stratified manner based on the `label_col` to maintain the 

same distribution of labels in both sets. The training set 

constitutes 80% of the data, and the testing set comprises 

the remaining 20%. 
 

Finally, the features of the training and testing sets are 

scaled using the `MinMaxScaler` from 

`sklearn.preprocessing`. The scaler is fitted on the 

training set and applied to both the training and testing 

sets to ensure that the feature values are normalized 

within the range [0, 1]. This step is crucial for ensuring 

that the model's performance is not affected by the 

different scales of the features. 

 

XG Boost Model 

 
The steps to train a machine learning model, and evaluate 

its performance using the XGBoost classifier. 

Firstly, class weights are computed to handle class 

imbalance in the dataset. The `compute_class_weight` 

function from `sklearn.utils` is used to calculate the class 

weights in a balanced manner. The unique class labels 

are used, and the Label column is the target label from 

the training set. The computed class weights are then 

converted into a dictionary format and saved to a JSON 

file named "class_weights.json". 

Next, a label dictionary is created to map each class label 
to itself using dictionary comprehension. This dictionary 

is saved for further use. 

The labels in the training and testing datasets are then 

converted to numerical indices based on their position in 

the `Label` column. This transformation is necessary for 
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the XGBoost classifier, which requires numerical labels 

for training. 

The XGBoost classifier, `XGBClassifier`, is then 

instantiated with 100 boosting rounds. The model is 

trained on the training data features and labels using the 

`fit` method. The `train_df[feature_cols].values` and 

`y_train` represent the feature matrix and target vector 
for the training set, respectively. 

After training, the model's performance is evaluated on 

the test data. The `predict` method generates predictions 

for the test set features, and the `classification_report` 

from `sklearn.metrics` is used to print a detailed report of 

the model's performance, including precision, recall, and 

F1-score for each class. 

Table 2 Compare table Accuracy, Precision and Recall 

 

The classification report provides a detailed evaluation of 

the model's performance across seven classes (0 through 

6) on a test dataset with a total of 905,998 samples. 

Class 0, with a support of 452,999 samples, achieved 

high performance with a precision of 0.95, a recall of 

0.99, and an F1-score of 0.97. Class 1 performed 

exceptionally well, achieving perfect scores (1.00) for 

precision, recall, and F1-score, across its 57,238 samples. 

Class 2, which includes 76,189 samples, had a precision 

of 0.87, a recall of 0.96, and an F1-score of 0.91. 

Class 3 also performed flawlessly with perfect precision, 

recall, and F1-scores of 1.00 across 187,405 samples. 

Class 4, with 99,854 samples, showed a precision of 

0.96, a recall of 0.89, and an F1-score of 0.92. However, 

Class 5, with 32,128 samples, had notably lower 
performance, reflected in a precision of 0.75, a recall of 

0.26, and an F1-score of 0.39. Finally, Class 6, the 

smallest class with 185 samples, achieved a precision of 

0.90, a recall of 0.85, and an F1-score of 0.88. 

Feature importances are then extracted from the trained 

model using the `feature_importances_` attribute. These 

importances are stored in a DataFrame called `ext`, 

which is sorted in descending order based on the 

importance values. The feature names corresponding to 

the indices are also added to this DataFrame. 

 

 
Figure 5 Feature extraction 

a horizontal bar graph showing the top 10 features by 

Extra Trees importance 

 

For feature selection, the `SelectFromModel` class from 

`sklearn.feature_selection` is used. This class selects 

features based on their importance weights from the 

trained model. The `seletor_model` is instantiated with 

the trained model and the `prefit=True` argument, 

indicating that the model has already been fitted. The 

`get_feature_names_out` method is used to retrieve the 
names of the selected features, which are then stored in 

the list `selected_features`. 

Table 3 model's performance 

 

 
  

 

The classification report provides an analysis of the 

model's performance across seven different classes (0 

through 6) on a dataset with a total of 905,998 samples. 

 

 

V. CONCLUSION 

This paper This study has successfully developed a 

dynamic neural network-based theft detection algorithm 

tailored for smart security systems, leveraging the 

XGBoost method to achieve high accuracy and robust 
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performance. The model's overall accuracy of 95% 

underscores its capability in effectively identifying and 

classifying various events within the security system, 
including theft-related activities. 

The detailed performance analysis reveals that the 

algorithm performs exceptionally well across most event 

classes, with several classes achieving near-perfect 

precision, recall, and F1-scores. Specifically, Classes 1, 

3, and 4 demonstrate the model's ability to accurately 

detect and categorize critical events with minimal error. 

While Class 5 exhibited lower performance, this finding 

provides valuable insights into areas where the model can 
be further optimized. 

The macro and weighted averages of precision, recall, 

and F1-score further validate the algorithm's reliability 

and consistency across different classes, highlighting its 

potential as a powerful tool for real-world smart security 

applications. By integrating advanced neural network 

techniques with the XGBoost method, this research 

contributes to the advancement of intelligent theft 

detection systems, offering a promising solution for 
enhancing security measures in various environments. 
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