
International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 07, July. 2024, pp. 112-118 ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[112]

Dynamic Neural Network Based Theft Detection Algorithm For Smart

Security Systems

Abstract – This paper explores the development and implementation of a dynamic neural network-based

theft detection algorithm tailored for smart security systems. Leveraging the advanced capabilities of neural

networks, the proposed algorithm aims to enhance the accuracy and reliability of detecting theft-related

activities in various environments. The model is trained and tested using the XGBoost method, demonstrating

an overall accuracy of 95%. This high level of performance is reflected in the precise identification of

multiple event classes within the security system. For instance, the algorithm achieved near-perfect

precision, recall, and F1-scores in most event categories, with Class 1 and Class 3 recording perfect metrics

across the board. Despite some variance in performance, particularly in Class 5, the overall results affirm

the effectiveness of the dynamic neural network approach in improving theft detection capabilities. The
macro and weighted average precision, recall, and F1-scores further support the robustness of the model.

This research contributes to the growing field of smart security systems by providing a sophisticated and

reliable solution for real-time theft detection, offering significant potential for practical application in

enhancing security measures..

Keywords: Dynamic Neural Networks, Theft Detection Algorithm, Smart Security Systems, XGBoost

Method, Security Enhancement

I. INTRODUCTION

The rapid advancements in technology have led to the

widespread adoption of smart security systems in various
domains, including residential, commercial, and

industrial sectors. These systems, powered by the

Internet of Things (IoT), artificial intelligence (AI), and

machine learning (ML), offer real-time monitoring and

automated decision-making capabilities, thereby

enhancing security measures and response times.

However, as these systems become more sophisticated,

so do the methods employed by malicious actors,

necessitating the development of more advanced and

reliable theft detection algorithms.

Traditional security systems often rely on predefined

rules and thresholds to detect suspicious activities. While

effective to some extent, these systems are limited in

their ability to adapt to new and evolving threats. They

may also produce a high rate of false positives, leading to

unnecessary alerts and potential desensitization of

security personnel. To address these challenges, there is a

growing interest in leveraging dynamic neural networks

for theft detection in smart security systems.

Dynamic neural networks offer several advantages over
traditional methods. They are capable of learning from

vast amounts of data, adapting to new patterns of

behavior, and improving their detection accuracy over

time. These networks can be trained to recognize a wide

range of activities, including normal and abnormal

behaviors, making them particularly well-suited for

complex environments where the distinction between

benign and malicious actions may not be clear-cut.

This paper focuses on the development of a dynamic

neural network-based theft detection algorithm designed

specifically for smart security systems. The algorithm
utilizes the XGBoost method, a powerful and efficient

gradient boosting technique, to enhance the model's

predictive accuracy and robustness. The primary

objective is to create a system that can accurately identify

and classify different events, particularly theft-related

activities, with minimal false positives and high

precision.

The study involves extensive testing and performance

evaluation of the proposed algorithm across multiple

event classes. The results demonstrate the algorithm's

effectiveness, with an overall accuracy of 95%, and
highlight its potential for real-world applications in

enhancing theft detection capabilities in smart security

systems. By leveraging advanced neural network

techniques, this research contributes to the ongoing

efforts to develop more intelligent, adaptive, and reliable

security solutions.

II. DYNAMIC NEURAL NETWORK

A dynamic neural network is an advanced type of

artificial neural network designed to adapt and respond to

changing environments and inputs in real-time. Unlike

traditional static neural networks, which have fixed

architectures and weights once trained, dynamic neural

networks can modify their structure, parameters, and

Sonawane Rahul Shivaji1 , Jeetendra Singh Yadav2

1Mtech Scholar,BHABHA University, , Bhopal, India

2 Prof. & HOD, BHABHA University , Bhopal, India

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 07, July. 2024, pp. 112-118 ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[113]

connections as they process new information. This

adaptability makes them particularly suited for

applications requiring real-time data analysis and

decision-making.

Figure 1. Dynamic Neural Network block diagram

Dynamic neural networks are characterized by their

ability to handle sequential and temporal data, making

them effective for tasks where the input data is time-

dependent or evolves over time. They can adjust to new

patterns and information, allowing them to continuously

learn and improve their performance. This adaptability is
crucial for applications such as speech recognition,

financial market prediction, and, notably, security

systems, where conditions and threats can change

rapidly.

III. METHOD

To begin, the training data are segmented into a large

number of subgroups by the use of ambiguous clustering

techniques using ANN. A broad range of neural networks
(ANNs) are trained using a wide variety of data

subsets as a direct result of this. A replacement

artificial neural network will, before creating the ultimate

outcome, first determine the membership grade of the

subgroups it has located and then connect those subsets

together. Figure 3.3 depicts the artificial neural networks

in their entirety. [Citation needed] In some machine

learning frameworks, the use of feed forward artificial

neural networks, commonly referred to as ANNs, may be

used not only for training but also for testing objectives.

ANNs are also known as artificial neural networks.
Step - I - highlighted and hand-picked data training

Step II: An ANN model is used for each of the different

training sets in order to train for training using particular

teaching algorithms I = 1,2, k). This is done in order to

train for training. The ANN model, which serves as the

basis for subsequent models. The third phase involves the

researchers simulating each ANN by using the whole In

an effort to bring down the total mistake rate, TR training

set was used. The next step that researchers often take to

validate their findings is to use the membership grade

that was supplied by the ambiguous cluster module. This
is done so that they may compare their findings to the

accepted value.. This is done so that the researchers may

compare their findings to the grade that was generated by

the module.

After then, researchers often combine all of the data

together (ANN) for usage. The researchers immediately

feed the data from the test set of ANNs and then retrieve

the output from those models while they are phase. The

final result will be generated by ambiguous aggregate

module depending on the data that was submitted before.

There necessary lawsuits that take place throughout the

course of the 3 phases of the

ANN structure.

 The following summarises each of these lawsuits:

Produce a number of different training subsets using the

initial training dataset TR;

 Produce a number of different models ANN using the

training subsets;

 Produce a method to gather a number of outcomes

generated by a number of base models ANN.

In artificial neural networks, the assessment of a gradient

for the weights that will be included in the network is
done via the use of a system known as back-propagation.

In most cases, training is performed on deep neural

networks, which is a term that denotes neural networks

that have more than one hidden unit. The two most

prevalent kinds of neural networks are known as feed

forward and backward neural networks. There are three

primary elements that make up neural networks.

 Input Nodes: The "Input Layer" is also referred to as

the "Input Nodes," which are the nodes which bring data
from outside the world into the network.

 Hidden Nodes: Hidden nodes do not have any type of

connection or interaction with the surface of the globe in

any way, shape, or form (hence the name is "hidden").

They perform operations on the data based on the

information that is provided by the input nodes and then

transmit that data to the nodes that will serve as outputs.

The accumulation of nodes that have been rendered

invisible produces what is known as a "hidden layer."

There may be simply one input layer and one output

layer in a feed forward network, but the network may

include zero, one, or more hidden layers.

Figure 2 The procedure of different layers of the back

proportion

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 07, July. 2024, pp. 112-118 ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[114]

Output Nodes — The processing and transportation of

data from the network to the outside world is the

responsibility of the Output nodes, which are sometimes

referred to as the "Output Layer." These nodes are

referred to collectively as the "Output nodes" in the
network."

Back In coping with noisy data, back propagation

performs rather well. A trend that flew under the radar

led to a positive answer. The most suitable method is

referred to as iterative back propagation. The back

propagation method is built on top of these fundamental

characteristics as its basis.

D - Data

T - Target

W - Weights

B - Bias.

There are 3 main stages of back propagation

 Feed forward network, data flow on each node in

cross section way.

 Fully network, data flow only straight forward way.

Figure 3 The technique proportion

Extreme Gradient Boosting (XGBoost) is an advanced

implementation of gradient boosting, designed for speed

and performance. The core idea of gradient boosting is to

build a model in a stage-wise fashion, combining the

predictions of multiple weak learners (typically decision

trees) to create a strong learner. Here's a detailed

explanation of the theory and equations behind XGBoost:

Gradient boosting constructs additive models in a

forward stage-wise manner. It aims to minimize a given

loss function by adding weak learners (e.g., decision

trees) sequentially. The general form of a boosted model

can be written as:

 where y_i is the predicted value for instance i, h_m is

the m-th weak learner, and gamma_m is the weight

assigned to the m-th learner.

Objective Function

The objective function in gradient boosting consists of

two parts: the loss function and a regularization term to
control the complexity of the model. The objective

function at the t-th iteration is:

 Where L is the loss function, and Omega is the

regularization term.

To minimize the objective function, XGBoost uses an

additive model approach. At each iteration, it adds a new

function (tree) to the model:

The loss function can be approximated using a second-

order Taylor expansion:

XGBoost introduces a regularization term to penalize the

complexity of the trees

To find the best tree structure, XGBoost evaluates all

possible splits and selects the one that maximizes the

gain, defined as the reduction in loss:

 where G and H are the sums of the gradients and

Hessians, respectively, for the current node, and G_L,

H_L, G_R, and H_R are the sums of the gradients and

Hessians for the left and right child nodes after the split.

The weight for each leaf is calculated as:

The final prediction for an instance i is obtained by

summing the contributions from all trees:

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 07, July. 2024, pp. 112-118 ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[115]

IV. RESULT

The dataset is divided into multiple files based on
specific dates, each unbalanced in nature. It is
crucial for users to preprocess and balance the
dataset to ensure higher-quality predictions in
machine learning models. This dataset serves as a

valuable resource for deep learning applications aimed at

detecting and analyzing DDoS attacks, providing rich,

detailed logs crucial for developing and testing predictive

models.

Table: 1 Data distribution

Data Pre Processing

In data preprocessing steps we prepare datasets for

machine learning tasks, specifically in the context of

threat detection. The process begins with data cleaning,

where we create a function that handles infinite and null

values. In this, first, any instances of positive and

negative infinity are replaced with NaN (null) values.

Following this, all rows containing null values are

removed, and then we verify changes again.

Figure 4 Data Pre Processing

Here's a bar graph representing the count of each label.

Then we encode the label into binary values, which are

then defined to create a new column called "Threat". This

column is derived from the "Label" column, encoding it

into two categories: "Benign" for benign instances and
"Malicious" for all other instances. The unique values

and their counts in the "Threat" column are checked to

ensure correct encoding.

To address class imbalance, we employ

`RandomUnderSampler` from the `imblearn` library.

This function separates the features (X) from the labels

(y), applies random undersampling to balance the classes,

and then combines the balanced features and labels back

into a single DataFrame. The new shape of the

DataFrame and the counts of each label are checked to
confirm the balancing.

After balancing, duplicate columns are removed from the

DataFrame by dropping them based on their names

stored in a variable `duplicates`.

To address multicollinearity, a set `correlated_col` is

created to store the names of highly correlated columns.

The code iterates through the correlation matrix, and for

each column, it checks if the absolute correlation with

previously checked columns exceeds a threshold of 0.90.

If so, the column is marked as correlated and its name is
added to the set. These highly correlated columns are

then dropped from the DataFrame, and the shape of the

DataFrame confirms the removal.

Subsequently, the DataFrame is split into training and

testing sets using the `train_test_split` function from

`sklearn.model_selection`. The split is performed in a

stratified manner based on the `label_col` to maintain the

same distribution of labels in both sets. The training set

constitutes 80% of the data, and the testing set comprises

the remaining 20%.

Finally, the features of the training and testing sets are

scaled using the `MinMaxScaler` from

`sklearn.preprocessing`. The scaler is fitted on the

training set and applied to both the training and testing

sets to ensure that the feature values are normalized

within the range [0, 1]. This step is crucial for ensuring

that the model's performance is not affected by the

different scales of the features.

XG Boost Model

The steps to train a machine learning model, and evaluate

its performance using the XGBoost classifier.

Firstly, class weights are computed to handle class

imbalance in the dataset. The `compute_class_weight`

function from `sklearn.utils` is used to calculate the class

weights in a balanced manner. The unique class labels

are used, and the Label column is the target label from

the training set. The computed class weights are then

converted into a dictionary format and saved to a JSON

file named "class_weights.json".

Next, a label dictionary is created to map each class label
to itself using dictionary comprehension. This dictionary

is saved for further use.

The labels in the training and testing datasets are then

converted to numerical indices based on their position in

the `Label` column. This transformation is necessary for

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 07, July. 2024, pp. 112-118 ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[116]

the XGBoost classifier, which requires numerical labels

for training.

The XGBoost classifier, `XGBClassifier`, is then

instantiated with 100 boosting rounds. The model is

trained on the training data features and labels using the

`fit` method. The `train_df[feature_cols].values` and

`y_train` represent the feature matrix and target vector
for the training set, respectively.

After training, the model's performance is evaluated on

the test data. The `predict` method generates predictions

for the test set features, and the `classification_report`

from `sklearn.metrics` is used to print a detailed report of

the model's performance, including precision, recall, and

F1-score for each class.

Table 2 Compare table Accuracy, Precision and Recall

The classification report provides a detailed evaluation of

the model's performance across seven classes (0 through

6) on a test dataset with a total of 905,998 samples.

Class 0, with a support of 452,999 samples, achieved

high performance with a precision of 0.95, a recall of

0.99, and an F1-score of 0.97. Class 1 performed

exceptionally well, achieving perfect scores (1.00) for

precision, recall, and F1-score, across its 57,238 samples.

Class 2, which includes 76,189 samples, had a precision

of 0.87, a recall of 0.96, and an F1-score of 0.91.

Class 3 also performed flawlessly with perfect precision,

recall, and F1-scores of 1.00 across 187,405 samples.

Class 4, with 99,854 samples, showed a precision of

0.96, a recall of 0.89, and an F1-score of 0.92. However,

Class 5, with 32,128 samples, had notably lower
performance, reflected in a precision of 0.75, a recall of

0.26, and an F1-score of 0.39. Finally, Class 6, the

smallest class with 185 samples, achieved a precision of

0.90, a recall of 0.85, and an F1-score of 0.88.

Feature importances are then extracted from the trained

model using the `feature_importances_` attribute. These

importances are stored in a DataFrame called `ext`,

which is sorted in descending order based on the

importance values. The feature names corresponding to

the indices are also added to this DataFrame.

Figure 5 Feature extraction

a horizontal bar graph showing the top 10 features by

Extra Trees importance

For feature selection, the `SelectFromModel` class from

`sklearn.feature_selection` is used. This class selects

features based on their importance weights from the

trained model. The `seletor_model` is instantiated with

the trained model and the `prefit=True` argument,

indicating that the model has already been fitted. The

`get_feature_names_out` method is used to retrieve the
names of the selected features, which are then stored in

the list `selected_features`.

Table 3 model's performance

The classification report provides an analysis of the

model's performance across seven different classes (0

through 6) on a dataset with a total of 905,998 samples.

V. CONCLUSION

This paper This study has successfully developed a

dynamic neural network-based theft detection algorithm

tailored for smart security systems, leveraging the

XGBoost method to achieve high accuracy and robust

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 07, July. 2024, pp. 112-118 ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[117]

performance. The model's overall accuracy of 95%

underscores its capability in effectively identifying and

classifying various events within the security system,
including theft-related activities.

The detailed performance analysis reveals that the

algorithm performs exceptionally well across most event

classes, with several classes achieving near-perfect

precision, recall, and F1-scores. Specifically, Classes 1,

3, and 4 demonstrate the model's ability to accurately

detect and categorize critical events with minimal error.

While Class 5 exhibited lower performance, this finding

provides valuable insights into areas where the model can
be further optimized.

The macro and weighted averages of precision, recall,

and F1-score further validate the algorithm's reliability

and consistency across different classes, highlighting its

potential as a powerful tool for real-world smart security

applications. By integrating advanced neural network

techniques with the XGBoost method, this research

contributes to the advancement of intelligent theft

detection systems, offering a promising solution for
enhancing security measures in various environments.

References

1. Ramanpreet Kaur,, Duˇsan Gabrijelˇciˇc , Tomaˇz

Klobuˇcar "Artificial intelligence for cybersecurity:

Literature review and future research directions "

Information Fusion Volume 97 , September 2023.

2. Shubhodip Sasmal "Preventing Card Fraud and Scam

Using Artificial Intelligence " Criminal Law
December 2021 DOI:10.55083/irjeas.2021.v09i04010

3. Waleed Hilal, S. Andrew Gadsden, John Yawney

"Financial Fraud: A Review of Anomaly Detection

Techniques and Recent Advances" Expert Systems

with Applications Volume 193, 1 May 2022.

4. Safdar Ali Abro, Lyu Guang Hua, Javed Ahmed

Laghari, Muhammad Akram, Bhayo, and Abdul Aziz

Manon "Machine learning based electricity theft

detection using support vector machines " IJECE

14(02):1240~1250 2024.

5. Rahul Kumar Jha "Energy Theft Detection using

Unsupervised Learning" November 2023
DOI:10.13140/RG.2.2.25576.65280

6. Rahul Chauhan, Kamal Kumar Ghanshala, R.C Joshi

"Convolutional Neural Network (CNN) for Image

Detection and Recognition " ICSCCC 2018

DOI:10.1109/ICSCCC.2018.8703316

7. Muhammad Ishfaque, Qianwei Dai, Nuhman ul Haq,

Khanzaib Jadoon , Syed Muzyan Shahzad and

Hammad Tariq Janjuhah " Use of Recurrent Neural

Network with Long Short-Term Memory for Seepage

Prediction at Tarbela Dam, KP, Pakistan" Energies

2022, 15(9), 3123;
https://doi.org/10.3390/en15093123

8. Chihang Yang, Hao Zhang, Yang Gao " Analysis of a

neural-network-based adaptive controller for deep-

space formation flying " Advances in Space Research

Volume 68, Issue 1, 1 July 2021, Pages 54-70

9. Ravi Raj & Andrzej Kos " An improved human

activity recognition technique based on convolutional

neural network" Nature Scientific Reports volume

13, Article number: 22581 (2023).

10. Lotfallahtabrizi, Parisa "A Novel Mobile Host

Intrusion Detection Using Neural Networks "

University of Regina 2018

https://hdl.handle.net/10294/8527

11. Adesh Kumar and Vijay Maheshawari "Analysis of

Dynamic Intelligent NetworkSecurity System "

International Journal of New Trends in Electronics

and Communication (IJNTEC) Vol.1, Issue. 2, Sep.

2013
12. Pooja Br, Rajkumar N " Real-Time Intelligent

Video Surveillance System using Recurrent Neural

Network" Procedia Computer Science Volume 235,

2024, Pages 1522-1531

13. Ann Nosseir , Khaled Nagati and Islam Taj-Eddin "

Intelligent Word-Based Spam Filter Detection Using

Multi-Neural Networks " IJCSI International Journal

of Computer Science Issues, Vol. 10, Issue 2, No 1,

March 2013

14. Alom, Md Zahangir, VenkataRamesh Bontupalli,

and Tarek M. Taha. "Intrusion detection using deep

belief networks." 2015 National Aerospace and
Electronics Conference (NAECON). IEEE, 2015.

Doi: 10.1109/NAECON.2015.7443094. [Access

27.04.2021].

15. Alazab, Mamoun, and MingJian Tang, eds. Deep

learning applications for cyber security. Springer,

2019. https://doi.org/10.1007/978-3-030-13057-2_5.

[Access 28.04.2021].

16. Kim, Jihyun, et al. "Long short-term memory

recurrent neural network classifier for intrusion

detection." 2016 International Conference on

Platform Technology and Service (PlatCon). IEEE,
2016. Doi: 10.1109/PlatCon.2016.7456805. [Access

28.04.2021].

17. Kasongo, Sydney Mambwe, and Yanxia Sun. "A

deep learning method with filterbased feature

engineering for wireless intrusion detection system."

IEEE Access 7 (2019): 38597-38607. Doi:

10.1109/ACCESS.2019.2905633. [Access

28.04.2021].

18. Naseer, Sheraz, et al. "Enhanced network anomaly

detection based on deep neural networks." IEEE

access 6 (2018): 48231-48246. Doi:

10.1109/ACCESS.2018.2863036. [Accessed
28.04.2021].

19. Gaur, Vimal, and Rajneesh Kumar. "Analysis of

machine learning classifiers for early detection of

DDoS attacks on IoT devices." Arabian Journal for

Science and Engineering 47, no. 2 (2022): 1353-

1374.

20. Pajila, P. J., E. Golden Julie, and Y. Harold

Robinson. "FBDR-Fuzzy based DDoS attack

Detection and Recovery mechanism for wireless

sensor networks." Wireless Personal

Communications 122, no. 4 (2022): 3053-3083.

https://hdl.handle.net/10294/8527

International Journal of Advancement in Electronics and Computer Engineering (IJAECE)
Volume 13, Issue 07, July. 2024, pp. 112-118 ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[118]

21. BanitalebiDehkordi, Afsaneh,

MohammadRezaSoltanaghaei, and Farsad Zamani

Boroujeni. "The DDoS attacks detection through

machine learning and statistical methods in SDN."

The Journal of Supercomputing 77, no. 3 (2021):

2383-2415.

22. Ahuja, Nisha, Gaurav Singal, and Debajyoti
Mukhopadhyay. "DLSDN: Deep learning for DDOS

attack detection in software defined networking." In

2021 11th International Conference on Cloud

Computing, Data Science & Engineering

(Confluence), pp. 683-688. IEEE, 2021.

23. Pande, Sagar, Aditya Khamparia, Deepak Gupta,

and Dang NH Thanh. "DDOS detection using

machine learning technique." In Recent Studies on

Computational Intelligence, pp. 59-68. Springer,

Singapore, 2021.

24. Aysa, Mahdi Hassan, Abdullahi Abdu Ibrahim, and

Alaa Hamid Mohammed. "Iotddos attack detection
using machine learning." In 2020 4th International

Symposium on Multidisciplinary Studies and

Innovative Technologies (ISMSIT), pp. 1-7.

IEEE,2020.

25. Rahman, Obaid, Mohammad Ali Gauhar Quraishi,

and Chung-Horng Lung. "DDoS attacks detection

and mitigation in SDN using machine learning." In

2019 IEEE world congress on services (SERVICES),

vol. 2642, pp. 184-189. IEEE, 2019.

26. Aamir, Muhammad, and Syed Mustafa Ali Zaidi.

"DDoS attack detection with feature engineering and
machine learning: the framework and performance

evaluation." International Journal of Information

Security 18, no. 6 (2019): 761-785.

27. University of New Brunswick, “Canadian Institute

for Cybersecurity” NSL-KDD dataset [Online]

Available: https://www.unb.ca/cic/datasets/nsl.html.

[Accessed 23.04.2021].

	I. Introduction
	II. Dynamic Neural Network
	III. Method
	IV. Result
	Data Pre Processing
	XG Boost Model

	V. Conclusion
	This paper This study has successfully developed a dynamic neural network-based theft detection algorithm tailored for smart security systems, leveraging the XGBoost method to achieve high accuracy and robust performance. The model's overall accuracy ...
	The detailed performance analysis reveals that the algorithm performs exceptionally well across most event classes, with several classes achieving near-perfect precision, recall, and F1-scores. Specifically, Classes 1, 3, and 4 demonstrate the model's...
	The macro and weighted averages of precision, recall, and F1-score further validate the algorithm's reliability and consistency across different classes, highlighting its potential as a powerful tool for real-world smart security applications. By inte...
	References

